20.等比數(shù)列{an}滿足a1+2a2=1,a${\;}_{3}^{2}$=a5-a6
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2a1+log2a2+…+log2an.求數(shù)列的前n項(xiàng)和.

分析 (1)利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)bn=log2a1+log2a2+…+log2an=-1-2-…-n=-$\frac{1}{2}{n}^{2}-\frac{1}{2}$n.利用12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$及其等差數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,∵a1+2a2=1,a${\;}_{3}^{2}$=a5-a6
∴a1(1+2q)=1,${a}_{1}^{2}{q}^{4}$=${a}_{1}{q}^{4}-{a}_{1}{q}^{5}$,
聯(lián)立解得:a1=q=$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n}$.
(2)bn=log2a1+log2a2+…+log2an=-1-2-…-n=-$\frac{n(n+1)}{2}$=-$\frac{1}{2}{n}^{2}-\frac{1}{2}$n.
∴數(shù)列的前n項(xiàng)和=$-\frac{1}{2}$(12+22+…+n2)-$\frac{1}{2}$(1+2+3+…+n)
=$-\frac{1}{2}$×$\frac{n(n+1)(2n+1)}{6}$-$\frac{1}{2}×\frac{n(n+1)}{2}$
=-$\frac{n(n+1)(n+2)}{6}$.

點(diǎn)評(píng) 本題考查了利用12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$求和、等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求證:平面ACC1A1⊥平面A1BD;
(2)當(dāng)BC⊥CD時(shí),直線BC與平面A1BD所成的角能否為45°?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的單調(diào)遞增區(qū)間是( 。
A.[-$\frac{π}{3}$,$\frac{5π}{3}$]B.[-2π,-$\frac{π}{3}$]C.[$\frac{5π}{3}$,2π]D.[-2π,-$\frac{π}{3}$]和[$\frac{5π}{3}$,2π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)平面向量$\overrightarrow{OA}$、$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=2、|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}•\overrightarrow{OB}$=0,點(diǎn)P滿足$\overrightarrow{OP}=\frac{m}{{\sqrt{2{m^2}+2{n^2}}}}\overrightarrow{OA}+\frac{{\sqrt{2}n}}{{\sqrt{{m^2}+{n^2}}}}\overrightarrow{OB}$,其中m≥0,n≥0,則點(diǎn)P所表示的軌跡長(zhǎng)度為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{π}{2}$D.$\frac{{\sqrt{2}π}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.對(duì)于同一平面的單位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,若$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則$(\overrightarrow a-\overrightarrow b)•(\overrightarrow a-2\overrightarrow c)$的最大值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在一個(gè)木箱中裝有編號(hào)分別為1,2,3,4,5的完全一樣的5個(gè)球,現(xiàn)從中同時(shí)取出兩個(gè)球,設(shè)X為取出的兩球的最大編號(hào),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.2016年1月1日,我國(guó)實(shí)施“全面二孩”政策,中國(guó)社會(huì)科學(xué)院在某地(已婚男性約15000人)隨機(jī)抽取了150名已婚男性,其中愿意生育二孩的有100名,經(jīng)統(tǒng)計(jì),該100名男性的年齡情況對(duì)應(yīng)的頻率分布直方圖如下;
(1)求這100名已婚男性的年齡平均值$\overline{x}$和樣本方差s2(同組數(shù)據(jù)用區(qū)間的中點(diǎn)值代替,結(jié)果精確到個(gè)位);
(2)(Ⅰ)試估計(jì)該地愿意生育二孩的已婚男性人數(shù);
     (Ⅱ)由直方圖可以認(rèn)為,愿意生育二孩的已婚男性的年齡ξ服從正態(tài)分布N(μ,δ2),其中μ近似樣本的平均值$\overline{x}$,δ2近似為樣本的方差s2,試問(wèn):該地愿意生育二孩且處于較佳的生育年齡ξ(ξ∈(26,31))的總?cè)藬?shù)約為多少?(結(jié)果精確到個(gè)位)
附:若ξ~N(μ,δ2),則P(μ-δ<ξ<μ+δ)=0.6826,P(μ-2δ<ξ<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某城區(qū)按以下規(guī)定收取水費(fèi):若每月用水不超過(guò)20m3,則每立方米水費(fèi)按2元收。蝗舫^(guò)20m3,則超過(guò)的部分按每立方米3元收取,如果某戶居民在某月所交水費(fèi)的平均價(jià)為每立方米2.20元,則這戶居民這月共用水( 。
A.46m3B.44m3C.26m3D.25m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y-2x≤-2}\\{y≥1}\\{x+y≤4}\end{array}\right.$,則$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范圍是[2,$\frac{10}{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案