【題目】若函數(shù)有且僅有1個零點,則實數(shù)的取值范圍為________.
【答案】或
【解析】
令f(x)=0,參變分離得a=,令h(x)=,對h(x)求導得函數(shù)h(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(﹣∞,0),(1,+∞),h(x)=h(0)=1,h(x)=h(1)=,由題意得函數(shù)h(x)與直線y=a有且僅有一個交點,即可得出a的取值范圍.
令f(x)=0,可得:a=,令h(x)=,
h(x)=,令h(x)=0,解得x=0或1,
x | (﹣∞,0) | 0 | (0,1) | 1 | (1,+∞) |
h(x) | ﹣ | 0 | + | 0 | ﹣ |
h(x) | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 |
由表格可得:h(x)=h(0)=1,h(x)=h(1)=,且,.
由f(x)有且僅有一個零點,轉(zhuǎn)化為函數(shù)h(x)與直線y=a有且僅有一個交點.
∴當或時,函數(shù)h(x)與直線y=a有且僅有一個交點.
故答案為:或
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項公式.
(2)設,若數(shù)列是等差數(shù)列,求實數(shù)的值;
(3)在(2)的條件下,設 記數(shù)列的前項和為,若對任意的存在實數(shù),使得,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=2,直線CA與平面ABD所成角的正弦值為,求二面角E-AD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某數(shù)學小組到進行社會實踐調(diào)查,了解到某公司為了實現(xiàn)1000萬元利潤目標,準備制定激勵銷售人員的獎勵方案:在銷售利潤超過10萬元時,按銷售利潤進行獎勵,且獎金y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%.同學們利用函數(shù)知識,設計了如下的函數(shù)模型,其中符合公司要求的是(參考數(shù)據(jù):,)( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某射擊小組有甲、乙、丙三名射手,已知甲擊中目標的概率是,甲、丙二人都沒有擊中目標的概率是,乙、丙二人都擊中目標的概率是.甲乙丙是否擊中目標相互獨立.
(1)求乙、丙二人各自擊中目標的概率;
(2)設乙、丙二人中擊中目標的人數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),函數(shù)為的導函數(shù).
(1)若,都有成立(其中),求的值;
(2)證明:當時,;
(3)設當時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左右焦點為為它的中心,為雙曲線右支上的一點,的內(nèi)切圓圓心為,且圓與軸相切于點,過作直線的垂線,垂足為,若雙曲線的離心率為,則( )
A.B.C.D.與關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,說法正確的個數(shù)是( )
(1)若pq為真命題,則p,q均為真命題
(2)命題“x0∈R,0”的否定是“x∈R,2x0”
(3)“”是“x∈[1,2],x2﹣恒成立”的充分條件
(4)在△ABC中,“”是“sinA>sinB”的必要不充分條件
(5)命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com