【題目】已知非零實(shí)數(shù),不全相等,則下列說法正確的個(gè)數(shù)是(

1)如果,,成等差數(shù)列,則,,能構(gòu)成等差數(shù)列

2)如果,,成等差數(shù)列,則,,不可能構(gòu)成等比數(shù)列

3)如果,,成等比數(shù)列,則,,能構(gòu)成等比數(shù)列

4)如果,成等比數(shù)列,則,不可能構(gòu)成等差數(shù)列

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

用列舉法判斷命題(1)(3),通過等比中項(xiàng)和等差中項(xiàng)的性質(zhì)判斷(2)(4)命題.

對(duì)(1)若,則不能夠成等差數(shù)列,故(1)錯(cuò)誤;

對(duì)(3)若,則成等比數(shù)列,故(3)正確;

對(duì)(2)若成等差數(shù)列,故可得,

成等比,則,

,與已知矛盾,∴,故(2)正確;

對(duì)(4),若成等比數(shù)列,故可得

,即,故(4)正確.

故正確的選項(xiàng)是(2)(3)(4.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.

質(zhì)量指標(biāo)

頻數(shù)

一年內(nèi)所需維護(hù)次數(shù)

(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購買該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購買該服務(wù),或者每件都不購買該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購買每件產(chǎn)品時(shí)是否值得購買這項(xiàng)維護(hù)服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,.已知分別是的中點(diǎn).沿折起,使的位置且二面角的大小是60°,連接,如圖:

1)證明:平面平面

2)求平面與平面所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,給定個(gè)整點(diǎn),其中.

(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;

(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.

i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,;

ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九世紀(jì)末,法國(guó)學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長(zhǎng)長(zhǎng)于這個(gè)圓的內(nèi)接等邊三角形邊長(zhǎng)的概率是多少?”貝特朗用“隨機(jī)半徑”、“隨機(jī)端點(diǎn)”、“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)A為圓O上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn)B,連接AB,所得弦長(zhǎng)AB大于圓O的內(nèi)接等邊三角形邊長(zhǎng)的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若函數(shù)的最大值為3,求實(shí)數(shù)的值;

若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

,是函數(shù)的兩個(gè)零點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,沿中位線DE折起后,點(diǎn)A對(duì)應(yīng)的位置為點(diǎn)P,.

1)求證:平面平面DBCE;

2)求證:平面平面PCE;

3)求直線BP與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017727日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進(jìn),并不斷刷新華語電影票房紀(jì)錄.825日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績(jī)成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結(jié)論錯(cuò)誤的是(

A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增

B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12

C.在《戰(zhàn)狼2》上映前兩周中,85日,86日達(dá)到了票房的高峰期

D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案