14.為了得到函數(shù)y=1-2sin2(x-$\frac{π}{12}$)的圖象,可以將函數(shù)y=sin2x的圖象(  )
A.向左平移$\frac{π}{3}$個單位長度B.向右平移$\frac{π}{6}$個單位長度
C.向右平移$\frac{π}{3}$個單位長度D.向左平移$\frac{π}{6}$個單位長度

分析 根據(jù)誘導(dǎo)公式,二倍角的余弦函數(shù)公式化簡可得函數(shù)解析式y(tǒng)=sin[2(x+$\frac{π}{6}$)],再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:∵y=1-2sin2(x-$\frac{π}{12}$)=cos(2x-$\frac{π}{6}$)=sin(2x+$\frac{π}{3}$)=sin[2(x+$\frac{π}{6}$)],
故把函數(shù)y=sin2x的圖象向左平移$\frac{π}{6}$個單位可得函數(shù)y=cos2(x+$\frac{π}{6}$)=1-2sin2(x-$\frac{π}{12}$)的圖象,
故選:D.

點評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知四棱錐P-ABCD的直觀圖與三視圖如圖所示,其中正(主)視圖與側(cè)(左)視圖為直角三角形,俯視圖為正方形(數(shù)據(jù)如圖所示),已知該幾何體的體積為$\frac{2}{3}$.
(1)求實數(shù)a的值;
(2)將△PAB繞PB旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=a(x-1)-lnx(a為實數(shù)),g(x)=x-1,h(x)=$\left\{\begin{array}{l}g(x),f(x)<g(x)\\ f(x),f(x)≥g(x)\end{array}$.
(1)當(dāng)a=1時,求函數(shù)f(x)=a(x-1)-lnx在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若h(x)=f(x),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1與曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1的( 。
A.實軸長相等B.離心率相等C.范圍相同D.漸近線相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題成立的是( 。
A.若¬p、¬q均為真命題,則p∨q為真命題
B.命題“若x2+2x<0,則-2<x<0”的逆否命題為“若-2<x<0,則x2+2x<0”
C.方程x2=1的一個必要不充分條件是x=1
D.拋擲3枚質(zhì)地均勻的硬幣,事件“至少有兩枚硬幣正面向上”等價于“至多有一枚硬幣反面向上”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{π}{3}$+$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,三個內(nèi)角A、B、C成等差數(shù)列,且cosA=$\frac{2}{3}$,則sinC=( 。
A.$\frac{-2\sqrt{3}+\sqrt{5}}{6}$B.$\frac{2\sqrt{3}+\sqrt{5}}{6}$C.$\frac{2\sqrt{3}-\sqrt{5}}{6}$D.$\frac{-2\sqrt{3}-\sqrt{5}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若x,y滿足$\left\{\begin{array}{l}{x+y≤4}\\{x-2y≥0}\\{x+2y≥4}\end{array}\right.$,則z=2x+y的最小值是(  )
A.$\frac{20}{3}$B.8C.$\frac{14}{3}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在三棱錐C-DAB中,E,F(xiàn)分別是AC,BD的中點,若EF⊥AB,且向量$\overrightarrow{EF}$與$\overrightarrow{CD}$的夾角為30°,則棱CD與棱AB的關(guān)系是( 。
A.CD=2ABB.CD=ABC.AB=2CDD.無法確定

查看答案和解析>>

同步練習(xí)冊答案