分析 (1)利用兩角和的正切函數(shù)公式表示出tan(B+C),把tanB和tanC的值代入即可求出tan(B+C)的值.
(2)根據(jù)三角形的內(nèi)角和定理及誘導(dǎo)公式得到tanA等于-tan(B+C),進(jìn)而得到tanA的值,結(jié)合A的范圍即可求得A的值,再由tanB和tanC的值,得到B和C的范圍及大小關(guān)系,利用同角三角函數(shù)間的基本關(guān)系分別求出sinB和sinC的值,由c的值,sinB和sinC的值,利用正弦定理即可求出a的值.
解答 解:(1)∵內(nèi)角A,B,C所對(duì)的邊分別為a,b,c 且tanB=$\frac{1}{2}$,tanC=$\frac{1}{3}$,c=1
∴tan(B+C)=$\frac{tanA+tanB}{1-tanAtanB}$=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}$=1…(3分)
(2)∵A=180°-B-C,…(4分)
所以tanA=tan(180°-(B+C))
=-tan(B+C)=-1.
∴A=$\frac{3π}{4}$.
因?yàn)閠anB=$\frac{1}{2}$>tanC=$\frac{1}{3}$>0,
所以0°<C<B<90°…(8分)
所以sinB=$\sqrt{1-co{s}^{2}B}$=$\sqrt{1-\frac{1}{1+ta{n}^{2}B}}$=$\frac{\sqrt{5}}{5}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\sqrt{1-\frac{1}{1+ta{n}^{2}C}}$=$\frac{\sqrt{10}}{10}$,…(9分)
由c=1及$\frac{a}{sinA}=\frac{c}{sinC}$得:a=$\sqrt{5}$…(11分)
點(diǎn)評(píng) 此題考查學(xué)生靈活運(yùn)用兩角和的正切函數(shù)公式,同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)求值,靈活運(yùn)用正弦定理及三角形的面積公式化簡(jiǎn)求值,是一道中檔題.學(xué)生做題時(shí)注意利用tanB和tanC的值確定出B和C的范圍及大。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18條 | B. | 20條 | C. | 25條 | D. | 10條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x±2)2+(y-1)2=4 | B. | (x±1)2+(y-$\frac{1}{2}$)2=1 | C. | (x-1)2+(y±2)2=4 | D. | (x-$\frac{1}{2}$)2+(y±1)2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,2) | B. | (-2,-1) | C. | (-2,-1] | D. | (-2,2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com