分析 根據(jù)題意,用$\overrightarrow{AD}$、$\overrightarrow{DC}$表示出$\overrightarrow{AE}$、$\overrightarrow{AF}$,根據(jù)$\overrightarrow{AC}$=$λ\overrightarrow{AE}$-$μ\overrightarrow{AF}$列出方程組,求出λ與μ的值即可.
解答 解:平行四邊形ABCD中,點E、F分別是DC,BC的中點,
∴$\overrightarrow{AE}$=$\overrightarrow{AD}$+$\overrightarrow{DE}$=$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{DC}$,
$\overrightarrow{AF}$=$\overrightarrow{AC}$+$\overrightarrow{CF}$=$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{BC}$=$\overrightarrow{DC}$+$\frac{1}{2}$$\overrightarrow{AD}$;
∴$\overrightarrow{AC}$=$λ\overrightarrow{AE}$-$μ\overrightarrow{AF}$
=λ($\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{DC}$)-μ($\overrightarrow{DC}$+$\frac{1}{2}$$\overrightarrow{AD}$)
=(λ-$\frac{1}{2}$μ)$\overrightarrow{AD}$+($\frac{1}{2}$λ-μ)$\overrightarrow{DC}$,
又$\overrightarrow{AC}$=$\overrightarrow{AD}$+$\overrightarrow{DC}$,
∴$\left\{\begin{array}{l}{λ-\frac{1}{2}μ=1}\\{\frac{1}{2}λ-μ=1}\end{array}\right.$,
解得λ=$\frac{2}{3}$,μ=-$\frac{2}{3}$,
∴λ+μ=0.
故答案為:0.
點評 本題考查了平面向量的線性表示與應(yīng)用問題,也考查了向量相等與方程組的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{2}{9}$,$\frac{1}{4}$) | B. | [$\frac{2}{9}$,$\frac{1}{4}$] | C. | (0,$\frac{2}{9}$] | D. | (0,$\frac{1}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3] | B. | (-2,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,3] | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{PH}{HC}=\frac{1}{2}$ | B. | PH=HC | C. | $\frac{PH}{HC}=2$ | D. | 不能確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com