2.△ABC的三個內(nèi)角分別為A、B、C,當∠A=α時,2sin$\frac{A}{2}$-cos(B+C)取得最大值.
(1)求α的值;
(2)如果∠A的對邊等于2,求△ABC面積的最大值.

分析 (1)利用倍角公式與二次函數(shù)的單調(diào)性即可得出;
(2)利用余弦定理、基本不等式的性質(zhì)可得bc的最大值,再利用三角形的面積計算公式即可得出.

解答 解:(1)2sin$\frac{A}{2}$-cos(B+C)=cosA+2sin$\frac{A}{2}$=$1-2si{n}^{2}\frac{A}{2}$+2sin$\frac{A}{2}$=-2$(sin\frac{A}{2}-\frac{1}{2})^{2}$+$\frac{3}{2}$,
當$sin\frac{A}{2}$=$\frac{1}{2}$時,∵A∈(0,π),∴$\frac{A}{2}$∈$(0,\frac{π}{2})$,∴$\frac{A}{2}$=$\frac{π}{6}$,解得A=$\frac{π}{3}$=α.
(2)∵${2}^{2}=^{2}+{c}^{2}-2bccos\frac{π}{3}$≥2bc-bc=bc,當且僅當b=c=2時取等號.
∴S△ABC=$\frac{1}{2}bcsin\frac{π}{3}$=$\frac{\sqrt{3}}{4}$bc≤$\frac{\sqrt{3}}{4}$×4=$\sqrt{3}$.
∴△ABC面積的最大值是$\sqrt{3}$.

點評 本題考查了倍角公式、二次函數(shù)的單調(diào)性、余弦定理、基本不等式的性質(zhì)、三角形的面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.求函數(shù)y=f(x)=$\frac{x-1}{{x}^{2}+1}$在區(qū)間[0,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設f(x)在R上是奇函數(shù),當x>0時,f(x)=x(1-x),試求:當x≤0時,f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)y=(k-1)x2+(k2+3k-4)x+2是偶函數(shù),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.拋物線y2=12x上一點M的橫坐標是3,縱坐標大于0,則M到焦點的距離是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的三個參量a,b,c成等差數(shù)列,則該橢圓的離心率( 。
A.$\frac{3}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3}{5}$或$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2-4x+1,則不等式f(x)>2x2-4的解集為( 。
A.(-1,2)B.(-1,1)C.[0,1]D.(-1,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若A(2,0),B(x,y),C(0,4)三點共線,則$\sqrt{{x}^{2}+{y}^{2}}$的最小值為( 。
A.$\frac{4\sqrt{5}}{5}$B.2C.4D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知命題p:關于x的方程4x2-2ax+2a+5=0最多只有一個實根,命題q:{x|x2-2x+1-m2≤0,m>0}.若非p是非q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案