11.若A(2,0),B(x,y),C(0,4)三點(diǎn)共線,則$\sqrt{{x}^{2}+{y}^{2}}$的最小值為( 。
A.$\frac{4\sqrt{5}}{5}$B.2C.4D.2$\sqrt{5}$

分析 三點(diǎn)共線即兩個(gè)向量共線,據(jù)兩向量共線的充要條件求出2x+y-4=0,原點(diǎn)到直線的距離,即可求出答案.

解答 解:∵A(2,0),B(x,y),C(0,4),
∴$\overrightarrow{AB}$=(x-2,y),$\overrightarrow{AC}$=(-2,4),
∵A(2,0),B(x,y),C(0,4)三點(diǎn)共線,
∴4(x-2)=-2y,
即2x+y-4=0,
則原點(diǎn)到直線的距離d=$\frac{4}{\sqrt{1+4}}$=$\frac{4\sqrt{5}}{5}$,
∵$\sqrt{{x}^{2}+{y}^{2}}$表示直線上的點(diǎn)到原點(diǎn)的距離,
∴$\sqrt{{x}^{2}+{y}^{2}}$的最小值為$\frac{4\sqrt{5}}{5}$,
故選:A.

點(diǎn)評 本題考查兩向量共線的充要條件及點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn=-$\frac{1}{2}$n2+kn(其中k∈N+),且Sn的最大值為8.
(1)確定常數(shù)k,求an;
(2)求數(shù)列bn=an+2n的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC的三個(gè)內(nèi)角分別為A、B、C,當(dāng)∠A=α?xí)r,2sin$\frac{A}{2}$-cos(B+C)取得最大值.
(1)求α的值;
(2)如果∠A的對邊等于2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點(diǎn)C(1,0),點(diǎn)A、B是⊙O:x2+y2=9上任意兩點(diǎn),且滿足$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,點(diǎn)P為弦AB的中點(diǎn),則點(diǎn)P的軌跡方程為x2-x+y2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.下列函數(shù)的定義域:
(1)y=log2(x+4)
(2)y=$\sqrt{lnx}$
(3)y=log3(5-2x)
(4)y=lg(x-3)
(5)y=$\frac{1}{1-lgx}$
(6)y=$\sqrt{lgx-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x、y∈R,則“x≠3或x≠5”是x+y≠8的(  )條件.
A.充分不必要B.充要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax2-x-3,
(1)求a的范圍,使y=f(x)在[-2,2]上不具單調(diào)性;
(2)當(dāng)$a=\frac{1}{2}$時(shí),函數(shù)f(x)在閉區(qū)間[t,t+1]上的最大值記為g(t),求g(t)的函數(shù)表達(dá)式;
(3)第(2)題的函數(shù)g(t)是否有最值,若有,請求出;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出,當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.,當(dāng)每輛車的月租金定為x元時(shí),租賃公司的月收益為y元,
(1)試寫出x,y的函數(shù)關(guān)系式(不要求寫出定義域);
(2)租賃公司某月租出了88輛車,求租賃公司的月收益多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,則z=2x-y的最小值為-1.

查看答案和解析>>

同步練習(xí)冊答案