A. | 1 | B. | $\frac{1}{12}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
分析 確定被積函數(shù)與被積區(qū)間,求出原函數(shù),即可得到結(jié)論.
解答 解:曲線C:y=x3(x≥0)的導(dǎo)數(shù)為y′=3x2,
在點(diǎn)x=1處的切線斜率為3,切點(diǎn)為(1,1),
則切線的方程為y=3x-2,
y=3x-2與x軸的交點(diǎn)為$(\frac{2}{3},0)$,
所以由曲線C、直線l及x軸圍成的封閉圖形的面積是
S=${∫}_{0}^{1}$x3dx-${∫}_{\frac{2}{3}}^{1}$(3x-2)dx=$\frac{1}{4}$x4|${\;}_{0}^{1}$-($\frac{3}{2}$x2-2x)|${\;}_{\frac{2}{3}}^{1}$=$\frac{1}{4}$-$\frac{1}{6}$=$\frac{1}{12}$.
故選:B.
點(diǎn)評(píng) 本題考查面積的計(jì)算,解題的關(guān)鍵是確定曲線交點(diǎn)的坐標(biāo),確定被積區(qū)間及被積函數(shù),利用定積分表示面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{i}{2}$ | B. | 1+$\frac{i}{2}$ | C. | -$\frac{1}{2}$-$\frac{i}{2}$ | D. | 1-$\frac{i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (一∞,1) | C. | (2,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com