9.若f(x)=ex-ae-x為奇函數(shù),則$f(x-1)<e-\frac{1}{e}$的解集為( 。
A.(-∞,2)B.(一∞,1)C.(2,+∞)D.(1,+∞)

分析 根據(jù)函數(shù)奇偶性的性質(zhì)先求出a的值,結(jié)合函數(shù)單調(diào)性的性質(zhì)進(jìn)行求解即可.

解答 解:∵f(x)=ex-ae-x為奇函數(shù),
∴f(0)=0,即f(0)=1-a=0,
則a=1,
即f(x)=ex-e-x,則函數(shù)f(x)在(-∞,+∞)上為增函數(shù),
則f(1)=e-$\frac{1}{e}$,
則不等式f(x-1)<e-$\frac{1}{e}$等價(jià)為f(x-1)<f(1),
即x-1<1,
解得x<2,
即不等式的解集為(-∞,2),
故選:A.

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性的性質(zhì)先求出a的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)y=(log2$\frac{x}{2}$)(log2$\frac{x}{4}$)的值域,其中x滿足-3≤log${\;}_{\frac{1}{2}}$x≤-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(理) 曲線C:y=x3(x≥0)在點(diǎn)x=1處的切線為l,則由曲線C、直線l及x軸圍成的封閉圖形的面積是( 。
A.1B.$\frac{1}{12}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)是定義在[0,+∞)上的單調(diào)遞增函數(shù),則滿足f (2x-1)<f($\frac{1}{3}$)的x的取值范圍是( 。
A.( $\frac{1}{3}$,$\frac{2}{3}$ )B.[$\frac{1}{3}$,$\frac{2}{3}$ )C.[$\frac{1}{2}$,$\frac{2}{3}$ )D.( $\frac{1}{2}$,$\frac{2}{3}$ )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若不等式$\frac{1}{x}$<2和|x|>$\frac{1}{3}$同時(shí)成立,則x的取值范圍是( 。
A.-$\frac{1}{2}$<x<$\frac{1}{3}$B.x>$\frac{1}{2}$或x<-$\frac{1}{3}$C.x>$\frac{1}{2}$或x<$\frac{1}{3}$D.x>$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow a=(cosα,1)$,$\overrightarrow b=(2,-sinα)$,若$\overrightarrow a⊥\overrightarrow b$,則tan2α=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知下列各組命題,其中p是q的充分必要條件的是( 。
A.p:m≤-2或m≥6;q:y=x2+mx+m+3有兩個(gè)不同的零點(diǎn)
B.p:$\frac{f(-x)}{f(x)}$=1;q:y=f(x)是偶函數(shù)
C.p:cos α=cos β;q:tan α=tan β
D.p:A∩B=A;q:A⊆U,B⊆U,∁UB⊆∁UA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)$f(x)=cos(2x-\frac{4π}{3})+2{cos^2}x$
(1)把函數(shù)f(x)的圖象向右平移$\frac{π}{2}$個(gè)單位,再向下平移$\frac{3}{2}$個(gè)單位得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間$[{-\frac{π}{4},\frac{π}{6}}]$上的最小值,并求出此時(shí)x的值;
(2)已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若$f(B+C)=\frac{3}{2},b+c=2$.求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直線l過橢圓C的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn),已知點(diǎn)D($\frac{5}{2}$,0),連結(jié)BD,過點(diǎn)A作垂直于y軸的直線l1,設(shè)直線l1與直線BD交于一點(diǎn)P,是否存在一條定直線l2,使得點(diǎn)P恒在直線l2上?若存在,請(qǐng)求出直線l2的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案