4.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),b=($\sqrt{3}$,k),若$\overrightarrow{a}$∥$\overrightarrow$,則k=( 。
A.-1B.1C.-3D.3

分析 利用向量共線,列出方程求解即可.

解答 解:$\overrightarrow{a}$=(1,$\sqrt{3}$),b=($\sqrt{3}$,k),若$\overrightarrow{a}$∥$\overrightarrow$,
可得:1•k=$\sqrt{3}•\sqrt{3}$,解得k=3.
故選:D.

點(diǎn)評(píng) 本題考查向量共線的坐標(biāo)運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),且P(ξ<2)=0.8,則P(1<ξ<2)0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知$f(x)=(1+\frac{1}{tanx}){sin^2}x-2sin(x+\frac{π}{4})sin(x-\frac{π}{4})$.
(1)若$tanα=2,α∈(0,\frac{π}{2})$,求f(α)的值;
(2)若$x∈[\frac{π}{12},\frac{π}{2}]$,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.sin75°sin15°+cos70°cos15°的值為( 。
A.1B.0C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,則2x+y的最小值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某校從高三年級(jí)中隨機(jī)選取200名學(xué)生,將他們的一模數(shù)學(xué)成績(jī)繪制成頻率分布直方圖(如圖).由圖中數(shù)據(jù)可知a=0.030.若要從成績(jī)?cè)赱120,130),[130,140),[140,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項(xiàng)活動(dòng),則從成績(jī)?cè)赱130,140)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中已知三邊a,b,c滿足(a+b+c)(b+c-a)=bc,則∠A=( 。
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)y=ax(a>0,a≠1)的反函數(shù)y=f(x)的圖象過(guò)點(diǎn)($\frac{1}{2}$,-1),函數(shù)g(x)=2f2(x)-2mf(x)+n,當(dāng)x=$\frac{1}{2}$時(shí),有最小值-8,不等式g(x)>0的解集為A.
(1)求函數(shù)y=f(x)的解析式;
(2)求集合A;
(3)設(shè)集合B={x||x-t|≤$\frac{1}{2}$},滿足A∩B=∅,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若a+b=2,c=$\sqrt{3}$,則角C的最大值為(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案