8.在(1-x)11的展開(kāi)式中系數(shù)最大的是第7項(xiàng).

分析 利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出通項(xiàng),求出正的系數(shù),選出最大值.

解答 解:由題意,(1-x)11的展開(kāi)式中系數(shù)${T_{r+1}}=C_{11}^r{({-1})^r},r=6$時(shí)最大,即第7項(xiàng).
故答案為:7.

點(diǎn)評(píng) 本題考查利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,已知圓O1與圓O2相交于A,B兩點(diǎn),過(guò)點(diǎn)A作圓O1的切線交圓O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線,分別交圓O1,圓O2于點(diǎn)D,E,DE與AC相交于點(diǎn)P.
(1)求證:AD∥EC;
(2)若AD是圓O2的切線,且PA=3,PC=1,AD=6,求DB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知一個(gè)球的體積為$\frac{4}{3}π$,則該球的表面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知橢圓${x^2}+\frac{y^2}{4}=1$,A、B是橢圓的左右頂點(diǎn),P是橢圓上不與A、B重合的一點(diǎn),PA、PB的傾斜角分別為α、β,則$\frac{{cos({α-β})}}{{cos({α+β})}}$=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,a、b、c分別是角A、B、C的對(duì)邊.若$\frac{sinC}{sinA}$=2,b2-a2=3ac,則∠B=( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列四個(gè)圖象,只有一個(gè)符合y=|k1x+b1|+|k2x+b2|-|k3x+b3|(k1,k2k3∈R+,b1b2b3≠0)的圖象,則根據(jù)你所判斷的圖象,k1、k2、k3之間一定滿足的關(guān)系是( 。
A.k1+k2=k3B.k1=k2=k3C.k1+k2>k3D.k1+k2<k3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某幾何體的三視圖如圖,則該幾何體的體積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{{e}^{x}(x<0)}\end{array}\right.$,則f[f(-1)]=$\frac{1}{{e}^{2}}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知定義在區(qū)間[a-1,2a+4]的偶函數(shù)f(x)=x2+(a-b)x+1,則不等式f(x)>f(b)的解集為( 。
A.[1,2]B.[-2,-1]C.(1,2]D.[-2,-1)∪(1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案