7.已知關(guān)于x的方程2x2-4ax+a-3=0(a∈R).
(1)若方程的兩根x1,x2滿(mǎn)足x1>1,x2<1,求實(shí)數(shù)a的取值范圍;
(2)若方程的兩根x1,x2滿(mǎn)足-1<x1<0,3<x2<4,求實(shí)數(shù)a的取值范圍.

分析 由條件利用一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),求得a的范圍.

解答 解:(1)設(shè)f(x)=2x2-4ax+a-3,則由題意可得f(1)=-3a-1<0,
求得a>-$\frac{1}{3}$.
(2)由題意可得$\left\{\begin{array}{l}{f(-1)=5a-1>0}\\{f(0)=a-3<0}\\{f(3)=15-11a<0}\\{f(4)=29-15a>0}\end{array}\right.$,求得$\frac{15}{11}$<a<$\frac{29}{15}$.

點(diǎn)評(píng) 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化、分類(lèi)討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)I是全集,集合M,N,P都是其子集,則圖中的陰影部分表示的集合為(  )
A.M∩(P∩∁IN)B.M∩(N∩∁IP)C.M∩(∁IN∩∁IM)D.(M∩N)∪(M∩P)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)A,B,C,D為同一球面上的四點(diǎn),且AB=AC=AD=2,AB⊥AC,AC⊥AD,AD⊥AB,則這個(gè)球的表面積是( 。
A.16πB.20πC.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為空間向量,則下列命題中:①$\overrightarrow{a}•\overrightarrow=\overrightarrow{a}•\overrightarrow{c}$⇒$\overrightarrow=\overrightarrow{c}$;②$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=0,或$\overrightarrow$=0;③|$\overrightarrow{a}+\overrightarrow$|•|$\overrightarrow{a}-\overrightarrow$|=${\overrightarrow{a}}^{2}$$-{\overrightarrow}^{2}$;||;④${\overrightarrow{a}}^{2}$$•{\overrightarrow}^{2}$=($\overrightarrow{a}•\overrightarrow$)2;⑤($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}•(\overrightarrow•\overrightarrow{c})$;⑥$\overrightarrow{a}$與($\overrightarrow{a}•\overrightarrow$)$•\overrightarrow{c}$-($\overrightarrow{a}•\overrightarrow{c}$)$•\overrightarrow$互相垂直;⑦|$\overrightarrow{a}+\overrightarrow$|2+|$\overrightarrow{a}-\overrightarrow$|2=2(|$\overrightarrow{a}$|2+|$\overrightarrow$|2);⑧$\overrightarrow{a}•\overrightarrow$$≤|\overrightarrow{a}|•|\overrightarrow|$.其中正確的命題的個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C的離心率為$\frac{\sqrt{2}}{2}$,右焦點(diǎn)為F2(1,0),過(guò)點(diǎn)B(2,0)作直線交橢圓C于P,Q兩點(diǎn),設(shè)直線PF2和QF2的斜率分別為k1,k1
(1)求證:k1+k2為定值;
(2)求△PF2Q面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列雙曲線的標(biāo)準(zhǔn)方程:
(1)經(jīng)過(guò)兩點(diǎn)(-4,0)、(4$\sqrt{2}$,-2):
(2)與雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}$=1有相同的漸近線,且過(guò)點(diǎn)(2$\sqrt{6}$,$-2\sqrt{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)f(x)=|2x-1|,若關(guān)于x的函數(shù)g(x)=(1-t)f2(x)-f(x)+t有三個(gè)零點(diǎn),則實(shí)數(shù)t的取值范圍為(  )
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)∪(1,+∞)C.($\frac{1}{2},1$)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)一個(gè)圓經(jīng)過(guò)點(diǎn)P(2,-1),和直線x-y=1相切,并且圓心在直線y=-2x上,求這個(gè)圓的方程.
(2)已知兩點(diǎn)A(4,9)和B(6,3)兩點(diǎn),求以AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)是定義在[-2,2]上的函數(shù),滿(mǎn)足f(x+2)=-f(x),且x∈[0,2]時(shí),f(x)=2x-x2
(1)求x∈[-2,0)時(shí),f(x)的表達(dá)式;
(2)畫(huà)出f(x)的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案