17.sin315°的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 直接利用誘導(dǎo)公式化簡(jiǎn)求解即可.

解答 解:sin315°=sin(360°-45°)=-sin45°=-$\frac{\sqrt{2}}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及特殊角的三角函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.二項(xiàng)式${(3{x^2}-\frac{2}{{\root{3}{x}}})^7}$展開式中含有常數(shù)項(xiàng),則常數(shù)項(xiàng)是第(  )項(xiàng).
A.6B.5C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l經(jīng)過直線x-y+2=0和2x+y+1=0的交點(diǎn),且直線l與直線x-3y+2=0平行,則直線l的方程為x-3y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{S_4}{S_2}$=10,a3=9.
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和為Sn;
(2)若數(shù)列{bn}的通項(xiàng)公式為$\frac{b_n}{{2{a_n}}}$=n-3,
(。┣髷(shù)列{bn}的前n項(xiàng)和為Tn;
(ⅱ)探究:數(shù)列{bn}是否有最小項(xiàng)?若沒有,請(qǐng)通過計(jì)算得到最小項(xiàng)的項(xiàng)數(shù);若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某單位有男職工600名,女職工400人,在單位想了解本單位職工的運(yùn)動(dòng)狀態(tài),根據(jù)性別采取分層抽樣的方法從全體職工中抽取100人,調(diào)查他們平均每天運(yùn)動(dòng)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)表明該單位職工平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,2].若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于1小時(shí)的為“運(yùn)動(dòng)達(dá)人”,低于1小時(shí)的為“非運(yùn)動(dòng)達(dá)人”.根據(jù)調(diào)查的數(shù)據(jù),按性別與是否為運(yùn)動(dòng)達(dá)人進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表.
運(yùn)動(dòng)時(shí)間
性別
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人合計(jì)
36
26
合計(jì)100
(Ⅰ)請(qǐng)根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補(bǔ)充完整,并通過計(jì)算判斷能否在犯錯(cuò)誤概率不超過0.025的前提下認(rèn)為性別與是否為運(yùn)動(dòng)達(dá)人有關(guān);
(Ⅱ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查該單位的3名男職工,設(shè)調(diào)查的3人中運(yùn)動(dòng)達(dá)人的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若x≠y,且x,a1,a2,a3,y與x,b1,b2,b3,b4,y各成等差數(shù)列,則$\frac{{a}_{2}-{a}_{1}}{_{2}-_{1}}$的值為( 。
A.1B.$\frac{4}{5}$C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)和記為Sn,若a4+a6+a8=15,則S11的值為( 。
A.55B.$\frac{55}{2}$C.165D.$\frac{165}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…則$2\sqrt{17}$是它的第(  )項(xiàng).
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)數(shù)列{an}滿足:a1=$\frac{1}{2}$,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n≥1),則a2016=-$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案