9.焦點(diǎn)分別為(-2,0),(2,0)且經(jīng)過點(diǎn)(2,3)的雙曲線的標(biāo)準(zhǔn)方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}-{y}^{2}=1$C.y2-$\frac{{x}^{2}}{3}$=1D.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}=1$

分析 先根據(jù)雙曲線上的點(diǎn)和焦點(diǎn)坐標(biāo),分別求得點(diǎn)到兩焦點(diǎn)的距離二者相減求得a,進(jìn)而根據(jù)焦點(diǎn)坐標(biāo)求得c,進(jìn)而求得b,則雙曲線方程可得.

解答 解:2a=$\sqrt{16+9}$-3=2
∴a=1
∵c=2
∴b=$\sqrt{3}$
∴雙曲線方程為x2-$\frac{{y}^{2}}{3}$=1.
故選:A.

點(diǎn)評 本題主要考查了雙曲線的標(biāo)準(zhǔn)方程.考查了學(xué)生對雙曲線基礎(chǔ)知識的理解和靈活把握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|1og2x<2},B=$\left\{{x|\frac{1}{3}<{3^x}<\sqrt{3}}\right\}$,則A∪B是( 。
A.$(0,\frac{1}{2})$B.(0,4]C.(-∞,-1]∪(4,+∞)D.(-1,4)??

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在正方體ABCD-A1B1C1D1中,異面直線AC與BC1所成角的大小是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若關(guān)于x的方程2sin(2x+$\frac{π}{6}$)+a-1=0(a∈R)在區(qū)間[0,$\frac{π}{2}$]上有兩個不相等的實(shí)根x1,x2,則(  )
A.x1+x2>|a+1|1.1
B.x1+x2<|a+1|1.1
C.x1+x2=|a+1|1.1
D.x1+x2與|a+1|1.1的大小關(guān)系無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出下列四個命題:①f(x)=sin(2x-$\frac{π}{4}$)的對稱軸為x=$\frac{kπ}{2}+\frac{3π}{8}$,k∈Z;②若函數(shù)y=2cos(ax-$\frac{π}{3}$)(a>0)的最小正周期是π,則a=2;③函數(shù)f(x)=sinxcosx-1的最小值為-$\frac{3}{2}$;④函數(shù)y=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2},\frac{π}{2}$]上是增函數(shù),其中正確命題的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若θ∈(0,π),且sinθ+cosθ=$\frac{1}{5}$,則曲線$\frac{{x}^{2}}{sinθ}-\frac{{y}^{2}}{cosθ}$=1是( 。
A.焦點(diǎn)在x軸上的橢圓B.焦點(diǎn)在y軸上的橢圓
C.焦點(diǎn)在x軸上的雙曲線D.焦點(diǎn)在y軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα\\ y=2sinα+2\end{array}\right.$,參數(shù)α∈[0,2π].已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,且長度單位相同.直線l的極坐標(biāo)方程為:$ρsin(θ-\frac{π}{3})=5$.
(1)求曲線C的直角坐標(biāo)方程;
(2)求曲線C上任一點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在區(qū)間〔-1,1〕上隨機(jī)取一個數(shù)x,使sin$\frac{πx}{2}$的值介于0到$\frac{1}{2}$之間的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{3π}$D.$\frac{1}{6π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一個平面圖形的水平放置的斜二測直觀圖是一個邊長為2的等邊三角形,則這個平面圖形的面積為$2\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案