13.如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,
且AB⊥AC,AB=AC=PA=2,E是BC的中點(diǎn).
(1)求異面直線AE與PC所成的角;
(2)求二面角D-PC-A的平面角的余弦值.

分析 (1)建立空間坐標(biāo)系,利用向量法即可求異面直線AE與PC所成的角;
(2)建立空間坐標(biāo)系,利用向量法即可求二面角D-PC-A的平面角的余弦值.

解答 解:(1)如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系O-xyz,
則B(2,0,0),C(0,2,0),P(0,0,2),
∵E是BC的中點(diǎn),∴E(1,1,0),
則$\overrightarrow{AE}$=(1,1,0),$\overrightarrow{PC}$=(0,2,-2),
cos<$\overrightarrow{AE}$,$\overrightarrow{PC}$>=$\frac{\overrightarrow{AE}•\overrightarrow{PC}}{|\overrightarrow{AE}||\overrightarrow{PC}|}$=$\frac{1}{2}$,
即<$\overrightarrow{AE}$,$\overrightarrow{PC}$>=60°,
故異面直線AE與PC所成的角是60°.
(2)在平面ABCD中,
∵AB=AC=2,AB⊥AC,
∴∠ABC=∠ACB=45°,
∵AD∥BC,∴∠DAC=∠ACB=45°,
由Rt△ACD,得AD=CD=$\sqrt{2}$,
∴D(-1,1,0),
∵C(0,2,0),
∴$\overrightarrow{CD}$=(-1,-1,0),$\overrightarrow{PC}$=(0,2,-2),
設(shè)平面PCD的法向量為$\overrightarrow{n}$=(x,y,z),
則由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=0}\\{\overrightarrow{n}•\overrightarrow{PC}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-x-y=0}\\{2y-2z=0}\end{array}\right.$,令x=-1,則y=1,z=1,
即$\overrightarrow{n}$=(-1,1,1),|$\overrightarrow{n}$|=$\sqrt{3}$,
∵AB⊥平面PAC,
∴$\overrightarrow{AB}$=(2,0,0)是平面PAC的一個(gè)法向量,
則cos<$\overrightarrow{AB}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{AB}•\overrightarrow{n}}{|\overrightarrow{AB}||\overrightarrow{n}|}$=-$\frac{\sqrt{3}}{3}$,
即二面角D-PC-A的平面角的余弦值為$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題主要考查空間異面直線所成角的求解以及二面角的求解,建立空間坐標(biāo)系,利用向量法是解決空間角的常用方法.考查學(xué)生的運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.一班現(xiàn)有9名學(xué)生去學(xué)校組織的高中數(shù)學(xué)競(jìng)賽選拔考試,該活動(dòng)有A,B,C是哪個(gè)等級(jí),分別對(duì)應(yīng)5分,4分,3分,恰有3名學(xué)生進(jìn)入三個(gè)級(jí)別,從中任意抽取n名學(xué)生(每個(gè)人被抽到的可能性是相同的,1≤n≤9),再將抽取的學(xué)生的成績(jī)求和.
(1)當(dāng)n=3時(shí),記事件A={抽取的3人中恰有2人級(jí)別相等},求P(A).
(2)當(dāng)n=2時(shí),若用ξ表示n個(gè)人的成績(jī)和,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,正方體ABCD-A1B1C1D1中,E是棱DD1的中點(diǎn),F(xiàn)是側(cè)面CDD1C1上的動(dòng)點(diǎn),且B1F∥平面A1BE,則B1F與平面CDD1C1所成角的正切值構(gòu)成的集合是( 。
A.{2}B.{$\frac{{2\sqrt{5}}}{5}$}C.[2,2$\sqrt{2}$]D.[$\frac{{2\sqrt{5}}}{5}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在如圖所示的幾何體中,四邊形ABCD是正方形,EA⊥底面ABCD,EF∥AD,且AB=6,AE=3$\sqrt{2}$,EF=3.
(Ⅰ)若AC與BD交于點(diǎn)O,求證:EO∥平面FCD;
(Ⅱ)求證:DE⊥平面ABF;
(Ⅲ)求二面角A-FD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知圓C過(guò)原點(diǎn),圓心在射線y=2x(x>0)上,半徑為$\sqrt{5}$.
(1)求圓C的方程;
(2)若M為直線m:x+2y+5=0上的一動(dòng)點(diǎn),N為圓C上的動(dòng)點(diǎn),求|MN|的最小值以及|MN|取最小值時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù) f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a∈R)
(1)當(dāng)a=0時(shí),求函數(shù) f(x)的極值;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E為AD的中點(diǎn),M是棱PC的中點(diǎn),PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求證:PE⊥平面ABCD;
(2)求直線BM與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2-alnx+(a-1)x,對(duì)任意的x1,x2∈(0,+∞),x1≠x2,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,其左焦點(diǎn)與拋物線C:y2=-4x的焦點(diǎn)相同.
(1)求此橢圓的方程;
(2)若過(guò)此橢圓的右焦點(diǎn)F的直線l與曲線C只有一個(gè)交點(diǎn)P,則
①求直線l的方程;
②橢圓上是否存在點(diǎn)M(x,y),使得S△MPF=$\frac{1}{2}$,若存在,請(qǐng)說(shuō)明一共有幾個(gè)點(diǎn);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案