6.如圖,正△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個(gè)圖形,下列命題中,錯(cuò)誤的是( 。
A.動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上
B.恒有DE⊥平面A′GF
C.三棱錐A′-FED的體積有最大值
D.異面直線A′E與BD不可能垂直

分析 由△ABC為正三角形可探討過A'作面ABC的垂線的垂足的位置在AF上,從而可以得到A,B,C正確,通過舉反例否定D,即可得答案.

解答 解:過A′作A'H⊥面ABC,垂足為H,
∵△ABC為正三角形且中線AF與中位線DE相交
∴AG⊥DE,A′G⊥DE,
又∵AG∩A′G=G
∴DE⊥面A′GA,
∴H在AF上,故恒有平面A′GF⊥平面BCED,故A,B對(duì).
S三棱錐A′-FED=$\frac{1}{3}$S△EFD•A′H,
∵底面面積是個(gè)定值,
∴當(dāng)A′H為A′G時(shí),三棱錐的面積最大,故C對(duì);
在△A′ED是△AED繞DE旋轉(zhuǎn)的過程中異面直線A′E與BD可能互相垂直,故D不對(duì)
故選:D.

點(diǎn)評(píng) 本題主要考查了命題的真假判斷與應(yīng)用,考查空間中點(diǎn),線,面的位置關(guān)系,以及線面,面面垂直的判斷和性質(zhì),同時(shí)也考查了異面直線所成角,是個(gè)基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)為奇函數(shù),且在(-∞,0)上是減函數(shù),若f(-3)=0,則xf(x)<0的解集為( 。
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=sin(2x-$\frac{π}{3}$)(x∈R)的圖象為C,以下結(jié)論正確的是①②.(寫出所有正確結(jié)論的編號(hào))
①圖象C關(guān)于直線x=$\frac{11π}{12}$對(duì)稱;
②圖象C關(guān)于點(diǎn)($\frac{2π}{3}$,0)對(duì)稱;
③函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{2}$)內(nèi)是增函數(shù);
④由y=sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位長度可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z=$\frac{2}{1+i}$,則|z|等于( 。
A.2B.$\sqrt{2}$C.2 $\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.奇函數(shù)f(x)的定義域?yàn)镽.若f(x+2)為偶函數(shù),且f(1)=1,則f(5)+f(8)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知AB是圓O的一條弦,過點(diǎn)A、B分別作AE⊥AB,BF⊥AB,交弧AB上任意一點(diǎn)T的切線于點(diǎn)E、F,OT交AB于點(diǎn)C,求證:
(Ⅰ)∠CBT=∠CFT;
(Ⅱ)CT2=AE•BF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知平行六面體ABCD-A1B1C1D1,M為A1C1與B1D1的交點(diǎn),化簡下列向量表達(dá)式:
(1)$\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}{B}_{1}}$;
(2)$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{A{{\;}_{1}D}_{1}}$;
(3)$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{D}_{1}}$;
(4)$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{C{C}_{1}}$+$\overrightarrow{{C}_{1}{A}_{1}}$+$\overrightarrow{{A}_{1}A}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=2sin(x-$\frac{π}{3}$),x∈[-π,0]的單調(diào)增區(qū)間為[-$\frac{π}{6}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\frac{{x}^{2}+x-5}{x-2}$,x∈(2,+∞)的最小值為(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案