分析 (1)消去參數(shù),可得曲線C1的普通方程,利用曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,射線$θ=\frac{π}{3}$與曲線C2交于點(diǎn)$D(2,\frac{π}{3})$,可得曲線C2的普通方程;
(2)曲線C1的極坐標(biāo)方程為${ρ}^{2}=\frac{4}{4si{n}^{2}θ+co{s}^{2}θ}$,代入,可得$\frac{1}{{{ρ_1}^2}}+\frac{1}{{{ρ_2}^2}}$的值.
解答 解:(1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosϕ\\ y=sinϕ\end{array}\right.$(ϕ為參數(shù)),普通方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.
曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,射線$θ=\frac{π}{3}$與曲線C2交于點(diǎn)$D(2,\frac{π}{3})$,曲線C2的普通方程為(x-2)2+y2=4-----------(4分)
(2)曲線C1的極坐標(biāo)方程為${ρ}^{2}=\frac{4}{4si{n}^{2}θ+co{s}^{2}θ}$,
所以$\frac{1}{{{ρ_1}^2}}+\frac{1}{{{ρ_2}^2}}$=$\frac{4si{n}^{2}θ+co{s}^{2}θ}{4}$+$\frac{4co{s}^{2}θ+si{n}^{2}θ}{4}$=$\frac{5}{4}$------------------------(10分)
點(diǎn)評 本題考查參數(shù)方程與普通方程、極坐標(biāo)方程的互化,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平面ABCD∥平面ABB′A′ | B. | 平面ABCD∥平面ADD′A′ | ||
C. | 平面ABCD∥平面CDD′C′ | D. | 平面ABCD∥平面A′B′C′D′ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com