已知函數(shù)f(x)=
x+1
x+2
,求f(x)的值域.
考點(diǎn):函數(shù)的值域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)=
x+1
x+2
=1-
1
x+2
,化簡(jiǎn)后求值域.
解答: 解:∵f(x)=
x+1
x+2
=1-
1
x+2
,
又∵
1
x+2
≠0,
∴1-
1
x+2
≠1,
即f(x)≠1.
則f(x)的值域?yàn)閧y|y≠1}.
點(diǎn)評(píng):函數(shù)值域的求法有多種,這種是獨(dú)立分子或分母法,即,未知數(shù)只出現(xiàn)在分子或分母上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)偶函數(shù)f(x)對(duì)任意x∈R,都有f(x+3)=-
1
f(x)
,且當(dāng)x∈[-3,-2]時(shí),f(x)=4x,則f(1075)等于( 。
A、8
B、
1
8
C、-8
D、-
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí)都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù),設(shè)f(x)在[0,1]上為非減函數(shù),且滿足以下條件:(1)f(0)=0;(2)f(
x
3
)=
1
2
f(x);(3)f(1-x)=1-f(x),則f(
1
3
)+f(
1
8
)=( 。
A、
3
4
B、
1
2
C、1
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圖為一個(gè)半球挖去一個(gè)圓錐的幾何體的三視圖,則該幾何體的體積為(  )
A、
32π
3
B、8π
C、
16π
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出下列函數(shù)圖象并寫出函數(shù)的單調(diào)區(qū)間.
(1)y=-x2+2|x|+1;
(2)y=|-x2+2x+3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
x
-x
(1)判斷f(x)的奇偶性;
(2)用定義證明f(x)在(0,+∞)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<-1或x>4},B={x|x<1或x>5},求A∩B、A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+(x-c)|x-c|,a<0,c>0.
(1)當(dāng)a=-
3
4
,c=
1
4
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)c=
a
2
+1時(shí),若f(x)≥
1
4
對(duì)x∈(c,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},全集U=R.
(1)若A∩B=∅,求實(shí)數(shù)a的取值范圍.
(2)若∁UB?A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案