已知函數(shù)y=f(x)的定義域?yàn)閇0,2],分別求下列三個(gè)函數(shù)的定義域:
(1)f(x2);
(2)f(|2x-1|);
(3)f(
x
-2).
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系分別進(jìn)行求解即可得到結(jié)論.
解答: 解:(1)∵函數(shù)y=f(x)的定義域?yàn)閇0,2],
∴0≤x≤2,
由0≤x2≤2,解得-
2
≤x≤
2

即f(x2)的定義域?yàn)閇-
2
,
2
];
(2)由0≤|2x-1|≤2,
得-2≤2x-1≤2,即-
1
2
≤x≤
3
2
,
即f(|2x-1|)的定義域?yàn)閇-
1
2
3
2
];
(3)由0≤
x
-2≤2,
得2≤
x
≤4,即4≤x≤16,
即f(
x
-2)的定義域?yàn)閇4,16];
點(diǎn)評(píng):本題主要考查函數(shù)定義域的求解,根據(jù)復(fù)合函數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2,點(diǎn)P為上頂點(diǎn),圓O:x2+y2=b2將橢圓C的長(zhǎng)軸三等分,直線l:y=mx-
4
5
(m≠0)與橢圓C交于A、B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證△APB為直角三角形;并求出該三解形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(Ⅰ)求證:BD⊥平面ADE;
(Ⅱ)求BE和平面CDE所成角的正弦值;
(Ⅲ)在線段CE上是否存在一點(diǎn)F使得平面BDF⊥平面CDE,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD與四邊形ADMN都為正方形,AN⊥AB,F(xiàn)為線段BN的中點(diǎn),E為線段BC上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)E為線段BC中點(diǎn)時(shí),求證:NC∥平面AEF;
(Ⅱ)求證:平面AEF⊥BCMN平面;
(Ⅲ)設(shè)
BE
BC
=λ,寫(xiě)出λ為何值時(shí)MF⊥平面AEF(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“你低碳了嗎?”這是某市為倡導(dǎo)建設(shè)資源節(jié)約型社會(huì)而發(fā)布的公益廣告里的一句話.活動(dòng)組織者為了解這則廣告的宣傳效果,隨機(jī)抽取了100名年齡段在[10,20),[20,30),…,[50,60)的市民進(jìn)行問(wèn)卷調(diào)查,由此得到樣本的頻率分布直方圖如圖所示.
(Ⅰ)求隨機(jī)抽取的市民中年齡段在[30,40)的人數(shù);
(Ⅱ)從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)抽取8人,求[50,60)年齡段抽取的人數(shù);
(Ⅲ)從按(Ⅱ)中方式得到的8人中再抽取3人作為本次活動(dòng)的獲獎(jiǎng)?wù),記X為年齡在[50,60)年齡段的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>b>c>1,記M=a-
c
,N=a-
b
,P=2(
a+b
2
-
ab
),Q=3(
a+b+c
3
-
3abc
),試找出中的最小者,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四面體D-ABC的體積為
1
6
,滿足∠ACB=45°,AC=
2
,AD+BC=2,則CD=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2+a4=6,且對(duì)任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx滿足f′(
π
2
)=0,若cn=
1
anan+1
,則數(shù)列{cn}的前n項(xiàng)和Sn
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若P為曲線
x=secα
y=tanα
(α為參數(shù))上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OP的中點(diǎn),則點(diǎn)M的軌跡方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案