7.在研究色盲與性別的關系調查中,調查了男性480人,其中有38人患色盲,調查的520個女性中6人患色盲,根據(jù)以上的數(shù)據(jù)得到一個2×2的列聯(lián)表
 患色盲不患色盲總計
  480
  520
總計  1000
(Ⅰ)請根據(jù)以上的數(shù)據(jù)完成這個2×2的列聯(lián)表;
(Ⅱ)若認為“性別與患色盲有關系”,則出錯的概率會是多少?
參考數(shù)據(jù):$\frac{{(38×514.442×6)}^{2}}{480×520×44×956}$=0.02714;$\frac{{(38×6.442×514)}^{2}}{480×520×44×956}$=4.90618;$\frac{{(38×442.6×514)}^{2}}{480×520×44×956}$=0.01791.

分析 (Ⅰ)根據(jù)調查了男性480人,其中有38人患色盲,調查的520名女性中有6人患色盲,列出列聯(lián)表;
(Ⅱ)代入公式計算得出K2值,結合臨界值,即可求得結論.

解答 解:(Ⅰ)

患色盲不患色盲總計
38442480
6514520
總計449561000
…(5分)
(Ⅱ)假設H:“性別與患色盲沒有關系”
先算出K的觀測值:K2=$\frac{1000×(38×514-442×6)^{2}}{480×520×44×956}$=27.14≥10.808 …(8分)
則有H成立的概率不超過0.001,
若認為“性別與患色盲有關系”,則出錯的概率為0.001    …(12分)

點評 本題考查獨立性檢驗知識,考查學生的計算能力,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.在平面直角坐標系xOy中,F(xiàn)是拋物線C:y2=2px(p>0)的焦點,圓Q過O點與F點,且圓心Q到拋物線C的準線的距離為$\frac{3}{2}$.
(1)求拋物線C的方程;
(2)已知拋物線上一點M(t,4),過點M作拋物線的兩條弦MD和ME,且MD⊥ME,判斷直線DE是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知x與y之間的幾組數(shù)據(jù)如下表:
x123456
y021334
假設根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,若某同學根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2),求得的直線方程為y=b′x+a′,則以下結論正確的是( 。
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.
A.$\stackrel{∧}$>b′,$\stackrel{∧}{a}$>a′B.$\stackrel{∧}$>b′,$\stackrel{∧}{a}$<a′C.$\stackrel{∧}$<b′,$\stackrel{∧}{a}$<a′D.$\stackrel{∧}$<b′,$\stackrel{∧}{a}$>a′

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若m是1和4的等比中項,則圓錐曲線${x^2}+\frac{y^2}{m}=1$的離心率為$\frac{\sqrt{2}}{2}$,或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,程序框圖的運算結果為( 。
A.6B.24C.20D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F1(-1,0),且離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設斜率為k的直線l過點P(0,2),且與橢圓C相交于A,B兩點,若|AB|=$\frac{12\sqrt{2}}{7}$,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知下面兩個命題:
命題p:?x∈R使x2-ax+1=0;命題q:?x∈R,都有x2-2x+a>0.
若p∧q是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.“設RT△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”拓展到空間,類比平面幾何的勾股定理,在立體幾何中,可得類似的結論是“設三棱錐A-BCD中三邊AB、AC、AD兩兩互相垂直,則$S_{△ABC}^2+S_{△ACD}^2+S_{△ADB}^2=S_{△BCD}^2$”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知實數(shù)a<0,函數(shù)$f(x)=a\sqrt{1-{x^2}}+\sqrt{1+x}+\sqrt{1-x}$.
(1)設$t=\sqrt{1+x}+\sqrt{1-x}$,求t的取值范圍;
(2)將f(x)表示為t的函數(shù)h(t);
(3)若函數(shù)f(x)的最大值為g(a),求g(a).

查看答案和解析>>

同步練習冊答案