18.已知x與y之間的幾組數(shù)據(jù)如下表:
x123456
y021334
假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2),求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是( 。
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.
A.$\stackrel{∧}$>b′,$\stackrel{∧}{a}$>a′B.$\stackrel{∧}$>b′,$\stackrel{∧}{a}$<a′C.$\stackrel{∧}$<b′,$\stackrel{∧}{a}$<a′D.$\stackrel{∧}$<b′,$\stackrel{∧}{a}$>a′

分析 利用數(shù)據(jù)求出回歸直線方程y=b1x+a1的系數(shù),利用數(shù)據(jù)(1,0)和(2,2)求得的直線方程y=b2x+a2的數(shù)據(jù),比較可得結(jié)論.

解答 解:由題意可知n=6,$\overline{x}$=$\frac{7}{2}$,$\overline{y}$=$\frac{13}{6}$,
∴$\hat$=-$\frac{66}{35}$,$\hat{a}$=$\frac{229}{30}$,
而由直線方程的求解可得b′=2,把(1,0)代入可得a′=-2,
∴$\stackrel{∧}$<b′,$\stackrel{∧}{a}$>a′.
故選:D

點(diǎn)評 本題考查線性回歸方程的求解,涉及由兩點(diǎn)求直線方程,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)m,n為兩條不同的直線,α,β,γ為三個(gè)不同的平面,則下列四個(gè)命題中為真命題的是( 。
A.若m∥α,n∥α,則m∥nB.若m∥α,m∥β,則α∥β
C.若m∥α,n∥β,m∥n,則α∥βD.若α∥β,α∩γ=m,β∩γ=n,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,在△ABC中,D是AB的中點(diǎn),下列關(guān)于向量$\overrightarrow{CD}$表示不正確的是( 。
A.$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{DB}$B.$\overrightarrow{CD}=\frac{1}{2}\overrightarrow{AB}-\overrightarrow{AC}$C.$\overrightarrow{CD}=\overrightarrow{BC}-\overrightarrow{DA}$D.$\overrightarrow{CD}=\frac{1}{2}\overrightarrow{CA}+\frac{1}{2}\overrightarrow{CB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知對任意實(shí)數(shù)x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,則m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列$\frac{\sqrt{3}}{2}$、$\frac{\sqrt{5}}{4}$、$\frac{\sqrt{7}}{6}$、$\frac{3}{a-b}$、$\frac{\sqrt{a+b}}{10}$、…根據(jù)前三項(xiàng)給出的規(guī)律,則實(shí)數(shù)對(2a,2b)可能是( 。
A.($\frac{19}{2}$,-$\frac{3}{2}$)B.(19,-3)C.($\frac{19}{2}$,$\frac{3}{2}$)D.(19,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.拋物線y2=4x上點(diǎn)P(a,2)到焦點(diǎn)F的距離為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知甲、乙兩名戰(zhàn)士在相同條件下各射靶10次,每次命中的環(huán)數(shù)分別是
甲:8,6,7,8,6,5,9,10,4,7;  乙:6,7,7,8,6,7,8,7,9,5.
根據(jù)計(jì)算結(jié)果,估計(jì)一下兩名戰(zhàn)士的射擊水平發(fā)揮更為穩(wěn)定的是乙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520個(gè)女性中6人患色盲,根據(jù)以上的數(shù)據(jù)得到一個(gè)2×2的列聯(lián)表
 患色盲不患色盲總計(jì)
  480
  520
總計(jì)  1000
(Ⅰ)請根據(jù)以上的數(shù)據(jù)完成這個(gè)2×2的列聯(lián)表;
(Ⅱ)若認(rèn)為“性別與患色盲有關(guān)系”,則出錯(cuò)的概率會(huì)是多少?
參考數(shù)據(jù):$\frac{{(38×514.442×6)}^{2}}{480×520×44×956}$=0.02714;$\frac{{(38×6.442×514)}^{2}}{480×520×44×956}$=4.90618;$\frac{{(38×442.6×514)}^{2}}{480×520×44×956}$=0.01791.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四面體ABCD中,△ABC與△DBC都是邊長為4的正三角形.求證:BC⊥AD

查看答案和解析>>

同步練習(xí)冊答案