分析 (1)由三角函數中的恒等變換應用化簡函數解析式可得f(x)=$\sqrt{37+6\sqrt{3}}$sin(2x+θ),(其中tanθ=$\frac{5}{3+\sqrt{3}}$),由三角函數的周期性及其求法及正弦函數的圖象即可得解.
(2)由三角函數中的恒等變換應用可得f(a)=(3+$\sqrt{3}$)sin2a+5cos2a=(3+$\sqrt{3}$)×$\frac{2tana}{1+ta{n}^{2}a}$+5×$\frac{1-ta{n}^{2}a}{1+ta{n}^{2}a}$=5,即可解得tana的值.
解答 解:(1)∵f(x)=3sin2x+2$\sqrt{3}$sinxcosx+5cos2x
=3sin2x+$\sqrt{3}$sin2x+5cos2x
=(3+$\sqrt{3}$)sin2x+5cos2x
=$\sqrt{37+6\sqrt{3}}$sin(2x+θ),(其中tanθ=$\frac{5}{3+\sqrt{3}}$)
∴函數f(x)的周期T=$\frac{2π}{2}=π$,最大值為:$\sqrt{37+6\sqrt{3}}$.
(2)∵f(a)=(3+$\sqrt{3}$)sin2a+5cos2a=(3+$\sqrt{3}$)×$\frac{2tana}{1+ta{n}^{2}a}$+5×$\frac{1-ta{n}^{2}a}{1+ta{n}^{2}a}$=5,
∴整理可得:10tan2a=tana(6+2$\sqrt{3}$).
∴可解得:tana=0,或tana=$\frac{3+\sqrt{3}}{5}$.
點評 本題主要考查了三角函數中的恒等變換應用,三角函數的周期性及其求法,正弦函數的圖象和性質,屬于基本知識的考查.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2n+1}$ | B. | $\frac{2n+2}{2n+1}$ | C. | $\frac{2n}{2n+1}$ | D. | $\frac{n}{2n+1}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)•sinx是奇函數 | B. | f(x)+cosx是偶函數 | ||
C. | f(x2)•sinx是奇函數 | D. | f(x2)+sinx是偶函數 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com