2.拋物線y2=16x的焦點到雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$漸近線的距離為2.

分析 先求出拋物線y2=16x的焦點,再求出雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$的漸進線,由此利用點到直線的距離公式能求出拋物線y2=16x的焦點到雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$漸近線的距離.

解答 解:拋物線y2=16x的焦點(4,0),
雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$的漸進線:$x±\sqrt{3}y=0$,
∴拋物線y2=16x的焦點到雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$漸近線的距離為:
d=$\frac{4}{2}=2$.
故答案為:2.

點評 本題考查拋物線的焦點到雙曲線的漸近線的距離的求法,是中檔題,解題時要認真審題,注意點到直線的距離公式、拋物線、雙曲線的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知f(x)為[-3,3]上的偶函數(shù),當0≤x≤3時,f(x)=ex+3x.
(1)求-3≤x≤0時,f(x)的解析式;
(2)解關(guān)于a的不等式f(a2-2)>f(2a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,已知$\frac{sin(A-B)}{sin(A+B)}$=$\frac{2c-b}{2c}$,求sin$\frac{A}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知直線l的方向向量$\overrightarrow{v}$=(1,-1),且直線l與兩坐標軸圍成的三角形面積為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.集合A={x∈N|-1<x<4}的真子集個數(shù)為( 。
A.7B.8C.15D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若雙曲線$\frac{x^2}{2m}-\frac{y^2}{m}=1$的一條準線方程是y=1,則實數(shù)m的值是-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1中,平面AA1B1B⊥平面ABC,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)若∠A1AB=∠ACB=60°,AB=BB1,AC=2,BC=1,求三棱錐A1-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.二次曲線$\left\{{\begin{array}{l}{x=5cosθ}\\{y=3sinθ}\end{array}}\right.$(θ是參數(shù))的左焦點的坐標是(-4,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.根據(jù)下列條件求方程.
(1)若拋物線y2=2px的焦點與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的右焦點重合,求拋物線的準線方程(5分) 
(2)已知雙曲線的離心率等于2,且與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1有相同的焦點,求此雙曲線標準方程.(5分)

查看答案和解析>>

同步練習冊答案