8.已知直線l的方向向量$\overrightarrow{v}$=(1,-1),且直線l與兩坐標(biāo)軸圍成的三角形面積為6,求直線l的方程.

分析 由題意可設(shè)直線方程為y=-x+b,由三角形的面積公式可得b的方程,解方程可得.

解答 解:∵直線l的方向向量$\overrightarrow{v}$=(1,-1),∴直線l的斜率為-1,
故可設(shè)直線方程為y=-x+b,令y=0可得x=b,令x=0可得y=b,
又∵直線l與兩坐標(biāo)軸圍成的三角形面積為6,
∴$\frac{1}{2}×$|b||b|=6,解得b=±2$\sqrt{3}$,
故直線l的方程為y=-x±2$\sqrt{3}$,即x+y±2$\sqrt{3}$=0.

點評 本題考查待定系數(shù)法求直線的方程,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)求函數(shù)y=3-4cos(2x+$\frac{π}{3}$),x∈[-$\frac{π}{3}$,$\frac{π}{6}$]的最大值和最小值及相應(yīng)的x值.
(2)求函數(shù)y=cos2x+2sinx-2,x∈R的值域.
(3)若函數(shù)f(x)=-sin2x+acosx+2,x∈[0,$\frac{π}{2}$]的最小值為$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=8,$\overrightarrow{a}$與$\overrightarrow$的夾角是120°.
(I)計算:|$\overrightarrow{a}$+$\overrightarrow$|和|$\overrightarrow{a}-2\overrightarrow$|;
(II)當(dāng)k為何值時,($\overrightarrow{a}+2\overrightarrow$)⊥(k$\overrightarrow{a}$-$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.x、y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≥3}\\{2x+y≥6}\end{array}\right.$,若z=ax+y有最小值6,則實數(shù)a=(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知正方形ABCD的邊長為2,E,F(xiàn)分別是CD,AD中點,則$\overrightarrow{AE}$•$\overrightarrow{CF}$=( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若A={x|x>-1},B={x|x≥1},則“x∈A且x∉B”成立的充要條件是-1<x<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.拋物線y2=16x的焦點到雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$漸近線的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.雙曲線4x2-y2=1的一條漸近線的方程為( 。
A.2x+y=0B.2x+y=1C.x+2y=0D.x+2y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若雙曲線C:x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的頂點到漸近線的距離為$\frac{\sqrt{2}}{2}$,則雙曲線的離心率e=( 。
A.2B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案