11.將函數(shù)f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$)-1的圖象向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì)②③④.(填入所有正確性質(zhì)的序號(hào))
①最大值為$\sqrt{3}$,圖象關(guān)于直線x=-$\frac{π}{3}$對(duì)稱;
②圖象關(guān)于y軸對(duì)稱;
③最小正周期為π;
④圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱;
⑤在(0,$\frac{π}{3}$)上單調(diào)遞減.

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用余弦函數(shù)的圖象和性質(zhì),得出結(jié)論.

解答 解:將函數(shù)f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$)-1的圖象向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,
得到y(tǒng)=$\sqrt{3}$cos[2(x+$\frac{π}{3}$)+$\frac{π}{3}$]-1=$\sqrt{3}$cos(2x+π)-1=-$\sqrt{3}$cos2x-1的圖象;
再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)g(x)=-$\sqrt{3}$cos2x 的圖象.
對(duì)于函數(shù)g(x):
它的最大值為$\sqrt{3}$,由于當(dāng)x=-$\frac{π}{3}$時(shí),g(x)=$\frac{\sqrt{3}}{2}$,不是最值,故g(x)的圖象不關(guān)于直線x=-$\frac{π}{3}$對(duì)稱,故排除①;
由于該函數(shù)為偶函數(shù),故它的圖象關(guān)于y軸對(duì)稱,故②正確;
它的最小正周期為$\frac{2π}{2}$=π,故③正確;
當(dāng)x=$\frac{π}{4}$時(shí),g(x)=0,故函數(shù)的圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱,故④正確;
在(0,$\frac{π}{3}$)上,2x∈(0,$\frac{2π}{3}$),g(x)不是單調(diào)函數(shù),故排除⑤,
故答案為:②③④.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)幾何體的三視圖如圖所示,則其表面積為( 。
A.$\frac{9}{2}$+4$\sqrt{2}$B.5$+4\sqrt{2}$C.6$+4\sqrt{2}$D.$\frac{13}{2}$$+4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)$(3,\root{3}{3})$,則f(x)是(  )
A.偶函數(shù),且在(0,+∞)上是增函數(shù)
B.偶函數(shù),且在(0,+∞)上是減函數(shù)
C.奇函數(shù),且在(0,+∞)上是增函數(shù)
D.非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某工廠在甲、乙兩地的兩個(gè)分廠各生產(chǎn)某種機(jī)器12臺(tái)和6臺(tái),現(xiàn)銷售給A地10臺(tái),B地8臺(tái),已知從甲地調(diào)動(dòng)1臺(tái)至A地和B地的運(yùn)費(fèi)分別為4百元和8百元,從乙地調(diào)運(yùn)1臺(tái)至A地和B地的費(fèi)用分別為3百元和5百元.
(Ⅰ)設(shè)從乙地調(diào)運(yùn)x臺(tái)至A地,求總費(fèi)用y關(guān)于臺(tái)數(shù)x的函數(shù)解析式;
(Ⅱ)若總運(yùn)費(fèi)不超過90百元,問共有幾種調(diào)運(yùn)方案;
(Ⅲ)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的運(yùn)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程log5x-sin2x=0的根的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a=22.5,b=log${\;}_{\frac{1}{2}}$2.5,c=($\frac{1}{2}$)2.5,則a,b,c之間的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線2x-y-2=0繞它與y軸的交點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{2}$所得的直線方程是( 。
A.-x+2y-4=0B.x+2y-4=0C.-x+2y+4=0D.x+2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知某智能手機(jī)制作完成之后還需要依次通過三道嚴(yán)格的審核程序,第-道審核、第二道審核、第三道審核通過的概率分別為$\frac{25}{32},\frac{4}{5},\frac{4}{5}$,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,每部手機(jī)只有三道程序都通過才能出廠銷售.
(1)求審核過程中只通過兩道程序的概率;
(2)現(xiàn)有3部智能手機(jī)進(jìn)人審核,記這3部手機(jī)可以出廠銷售的部數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知點(diǎn)P在拋物線x2=y上運(yùn)動(dòng),過點(diǎn)P作y軸的垂線段PD,垂足為D.動(dòng)點(diǎn)M(x,y)滿足$\overrightarrow{DM}=2\overrightarrow{DP}$,設(shè)點(diǎn)M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l:y=-1,若經(jīng)過點(diǎn)F(0,1)的直線與曲線C相交于A、B兩點(diǎn),過點(diǎn)A、B分別作直線l的垂線,垂足分別為A1、B1,試判斷直線A1F與B1F的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案