13.已知f(x)=ax2+x-lnx.
(1)若a=1,求函數(shù)y=f(x)的極值;
(2)若y=f(x)存在單調遞增區(qū)間,求實數(shù)a的取值范圍.

分析 (1)代入a的值,求出函數(shù)f(x)的導數(shù),根據(jù)導函數(shù)為0,即可求解函數(shù)的極值;
(2)問題轉化為存在關于a的不等式,利用表達式的最值,求解a的范圍.

解答 解:(1)a=1,f(x)=x2+x-lnx.定義域為x>0,
f′(x)=2x+1-$\frac{1}{x}$=$\frac{(2x-1)(x+1)}{x}$,(x>0),
由$\frac{(2x-1)(x+1)}{x}$=0,解得x=$\frac{1}{2}$,當x∈(0,$\frac{1}{2}$)時,f′(x)<0,函數(shù)是減函數(shù),當x$>\frac{1}{2}$時,f′(x)>0,函數(shù)在增函數(shù),x=$\frac{1}{2}$
函數(shù)f(x)取到極小值,
∴f($\frac{1}{2}$)=$\frac{3}{4}+ln2$;
(2)f′(x)=2ax+1-$\frac{1}{x}$=$\frac{2{ax}^{2}+x-1}{x}$,(x>0),y=f(x)存在單調遞增區(qū)間,可知2ax2+x-1>0有解.
可得a$>\frac{1-x}{{2x}^{2}}$=$\frac{1}{{2x}^{2}}-\frac{1}{2x}$=$\frac{1}{2}$$(\frac{1}{x}-\frac{1}{2})^{2}$-$\frac{1}{8}$,當且僅當x=$\frac{1}{8}$時取等號.
∵$\frac{1}{2}$$(\frac{1}{x}-\frac{1}{2})^{2}$-$\frac{1}{8}$≥$-\frac{1}{8}$,
∴a$>-\frac{1}{8}$
實數(shù)a的取值范圍:($-\frac{1}{8},+∞$).

點評 本題考查了函數(shù)的極值問題,考查函數(shù)的單調性、最值問題,導數(shù)的應用,考查運算求解能力,推理論證能力;考查化歸與轉化思想.對數(shù)學思維有一定的要求,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.對于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“可等域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個“可等域區(qū)間”,給出下列四個函數(shù):
①f(x)=sin($\frac{π}{2}$x)
②f(x)=|2x-1|
③f(x)=2x2-1
④f(x)=log2(2x-2).
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的序號為②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.復數(shù)z=$\frac{2}{1-i}$,則復數(shù)z的模是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A.16π-16B.16πC.16π-8D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)y=x3+3ax2+(a2+3a-1)x+a在x=-1時取得極值,則a=1,2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿市場售價與上市時間的關系用圖1所示的一條折線表示,西紅柿的種植成本與上市時間的關系用圖2所示的拋物線表示.(注:市場售價和種植成本的單位:元/kg,時間單位:天)

(1)寫出圖1表示的市場售價與時間的函數(shù)關系式P=f(t);寫出圖2表示的種植成本與時間的函數(shù)關系式Q=g(t);
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{2}$+y2=1的左、右焦點,過F1且斜率不為零的動直線l與橢圓C交于A,B兩點.
(Ⅰ)求△AF1F2的周長;
(Ⅱ)若存在直線l,使得直線F2A,AB,F(xiàn)2B與直線x=-$\frac{1}{2}$分別交于P,Q,R三個不同的點,且滿足P,Q,R到x軸的距離依次成等比數(shù)列,求該直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若雙曲線的漸近線方程為2x±y=0,且過點(1,2$\sqrt{2}$),則雙曲線的方程為$\frac{{y}^{2}}{4}-{x}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在平面直角坐標系xOy中,已知△ABC的頂點A(-4,0)和C(4,0),頂點B在雙曲線$\frac{x^2}{9}-\frac{y^2}{7}=1$上,則$\frac{sinA-sinC}{sinB}$=$±\frac{3}{4}$.

查看答案和解析>>

同步練習冊答案