16.有一塊多邊形的菜地,它的水平放置的平面圖形的斜二測直觀圖是直角梯形(如圖)∠ABC=45°,AB=$\sqrt{2}$,AD=1,DC⊥BC,則這塊菜地的面積為$3\sqrt{2}$.

分析 以O(shè)點為坐標(biāo)原點,在直觀圖中建立平面直角坐標(biāo)系,按斜二測畫直觀圖的原則,找到四邊形ABCD的四個頂點在平面直角坐標(biāo)系下對應(yīng)的點,即把直觀圖中的點還原回原圖形中,連結(jié)后得到原圖形,然后利用梯形面積公式求解.

解答 解:如圖,
直觀圖四邊形的邊BC在x′軸上,在原坐標(biāo)系下在x軸上,長度不變,
點A在y′軸上,在原圖形中在y軸上,且BE長度為AB長的2倍,過E作EF∥x軸,
且使EF長度等于AD,則點F為點D在原圖形中對應(yīng)的點.
∴四邊形EBCF為四邊形ABCD的原圖形.
在直角梯形ABCD中,由AB=$\sqrt{2}$,AD=1,得BC=2.
∴四邊形EBCF的面積S=$\frac{1}{2}$(EF+BC)•BE=$\frac{1}{2}$(1+2)×2$\sqrt{2}$=$3\sqrt{2}$,
故答案為:$3\sqrt{2}$.

點評 本題考查了水平放置的平面圖形的直觀圖的畫法,考查了原圖形和直觀圖面積之間的關(guān)系,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.橢圓3x2+2y2=6的焦距為( 。
A.1B.2C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.
(1)設(shè)F是C1的左焦點,E是C1右支上一點.若|EF|=2$\sqrt{2}$,求E點的坐標(biāo);
(2)設(shè)斜率為1的直線l交C1于P、Q兩點,若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1.若M、N分別是C1、C2上的動點,且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)z=$\frac{2}{1-i}$,則復(fù)數(shù)z的模是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知雙曲線的方程為16x2-9y2=144.
(1)求該雙曲線的實半軸長,虛半軸長,半焦距長,離心率;
(2)求該雙曲線的焦點坐標(biāo),頂點坐標(biāo),漸進線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.16π-16B.16πC.16π-8D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=x3+3ax2+(a2+3a-1)x+a在x=-1時取得極值,則a=1,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{2}$+y2=1的左、右焦點,過F1且斜率不為零的動直線l與橢圓C交于A,B兩點.
(Ⅰ)求△AF1F2的周長;
(Ⅱ)若存在直線l,使得直線F2A,AB,F(xiàn)2B與直線x=-$\frac{1}{2}$分別交于P,Q,R三個不同的點,且滿足P,Q,R到x軸的距離依次成等比數(shù)列,求該直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程lgx+x=0的根所在的區(qū)間是( 。
A.$(0,\frac{1}{4})$B.$(\frac{1}{4},\frac{1}{2})$C.$(\frac{1}{2},\frac{3}{4})$D.$(\frac{3}{4},1)$

查看答案和解析>>

同步練習(xí)冊答案