分析 利用定積分的法則分步積分以及幾何意義解答.
解答 解:${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示已原點為圓心,以1為半徑的圓的面積的四分之一,
∴${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$,
∴${∫}_{0}^{1}({e}^{x}+\sqrt{1-{x}^{2}})$dx=${∫}_{0}^{1}$exdx+${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=ex|${\;}_{0}^{1}$+$\frac{π}{4}$=e-1+$\frac{π}{4}$,
故答案為:e-1+$\frac{π}{4}$.
點評 本題考查定積分的計算,利用積分法則分步計算,結(jié)合定積分的幾何意義解答,考查學生的計算能力,屬于基礎(chǔ)題
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 焦點在x軸上的橢圓 | B. | 焦點在y軸上的橢圓 | ||
C. | 焦點在x軸上的雙曲線 | D. | 表示焦點在y軸上的雙曲線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com