A. | x=0 | B. | x=2 | C. | y=2 | D. | y=4 |
分析 運用奇函數(shù)的性質(zhì),若f(x+1)是奇函數(shù),則f(1)=0,求得a,再求函數(shù)的導(dǎo)數(shù),求出切線的斜率,運用點斜式方程,即可得到切線方程.
解答 解:由于函數(shù)f(x)=x3-3x2+a,若f(x+1)是奇函數(shù),
則f(1)=0,即有1-3+a=0,解得,a=2,
f(x)=x3-3x2+2,導(dǎo)數(shù)f′(x)=3x2-6x,
則在切點(0,2)處的斜率為0,
則切線方程為:y=2.
故選:C.
點評 本題考查導(dǎo)數(shù)的運用:求切線方程,考查函數(shù)的奇偶性及運用,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
f (1)=-2 | f (1.5)=0.625 | f (1.25)=-0.984 |
f (1.375)=-0.260 | f (1.4375)=0.162 | f (1.40625)=-0.054 |
A. | 1.25 | B. | 1.375 | C. | 1.42 | D. | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{25}{4}$ | B. | $\frac{15}{2}$ | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,-$\frac{π}{3}$ | B. | 2,-$\frac{π}{6}$ | C. | 4,-$\frac{π}{6}$ | D. | 4,$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2=2 | B. | x2+y2=$\frac{9}{4}$ | C. | x2+y2=4 | D. | x2+y2=9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,0)∪(0,1) | C. | (0,1) | D. | (0,1)∪(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com