求函數(shù)f(x)=
5x+3(x≤0)
x+3(0<x≤1)
-x+5(x>1)
的最大值.
考點:分段函數(shù)的應(yīng)用,函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達式分別進行求解即可得到結(jié)論.
解答: 解:函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞增,最大值f(x)max=f(0)=3;
函數(shù)f(x)在區(qū)間(0,1]上單調(diào)遞增,最大值f(x)max=f(1)=4;
函數(shù)f(x)在區(qū)間(1,+∞)上單調(diào)遞減,f(x)<-1+5=4,不存在最大值.
綜上所述,函數(shù)f(x)的最大值為4.
點評:本題主要考查函數(shù)最值的求解,根據(jù)分段函數(shù)的表達式分別進行判斷是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)是偶函數(shù),其定義域為{x|x≠0},且函數(shù)f(x)在(0,+∞)上是減函數(shù),f(2)=0,則函數(shù)f(x)的零點有( 。
A、唯一一個B、兩個
C、至少兩個D、無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對于x的所有實數(shù)值,函數(shù)f(x)=x2-4ax+2a+12(a∈R)的值都是非負的,求關(guān)于x的方程
x
a+2
=|a-1|+2的根的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)圖象與函數(shù)h(x)=x+
1
x
+2的圖象關(guān)于點A(0,1)對稱
(1)求函數(shù)f(x)的解析式;
(2)g(x)=f(x)+
a
x
,x∈[1,2],求g(x)最小值M(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,且cos2A=3cos(B+C)+1.
(1)求A;
(2)若cosBcosC=-
1
8
,且△ABC的面積為
3
,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一條由西向東的河流,甲城位于河西頭的南岸邊,乙城位于河?xùn)|頭離南岸6km處,乙城到河南岸的垂足與甲城相距30km,兩城要在此河南岸設(shè)一水廠取水,從水廠到甲、乙兩城分別按直線埋放水管,其費用分別為每千米2000元和2500元,問此水廠應(yīng)設(shè)在何處,才能使埋放水管的費用最。坎⑶蟪鲎钍〉乃苜M用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解某校學(xué)生的身高情況,現(xiàn)從甲乙兩個班各隨機抽取10名同學(xué),測量他們的身高后獲得身高數(shù)據(jù)的莖葉圖如圖所示.
(1)莖葉圖中有一個數(shù)據(jù)污損不清(用X表示),若甲班10名同學(xué)的平均身高與乙班10名同學(xué)的平均身高相同,試推算這個污損的數(shù)據(jù)是多少?
(2)若X=4,現(xiàn)從甲班10名同學(xué)身高在160cm-170cm和170cm-180cm的人中各隨機抽取1人,求這兩人身高之和超過340cm(包括340cm)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,an=n(an+1-an)(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈(1,2)時,不等式(x-1)2+loga
1
x
<0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案