17.已知數(shù)列{an}的前n項(xiàng)和Sn滿足(p-1)Sn=p2-an(p>0,p≠1),且a3=$\frac{1}{3}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$,數(shù)列{bnbn+2}的前n項(xiàng)和為Tn,若對于任意的正整數(shù)n,都有Tn<m2-m+$\frac{3}{4}$成立,求實(shí)數(shù)m的取值范圍.

分析 (Ⅰ)通過在(p-1)Sn=p2-an(p>0,p≠1)中令n=1可知a1=p,令n=2可知a2=1,令n=3并結(jié)合a3=$\frac{1}{3}$可知p=3,進(jìn)而可知數(shù)列{an}是首項(xiàng)為3,公比為$\frac{1}{3}$的等比數(shù)列,計(jì)算即得結(jié)論;
(Ⅱ)通過(I)可知bn=$\frac{1}{n}$,裂項(xiàng)、并項(xiàng)相加可知Tn=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$),利用Tn<$\frac{3}{4}$,問題轉(zhuǎn)化為解不等式$\frac{3}{4}$≤m2-m+$\frac{3}{4}$,計(jì)算即得結(jié)論.

解答 解:(Ⅰ)依題意,(p-1)S1=p2-a1(p>0,p≠1),
∴a1=p,
∴(p-1)(p+a2)=p2-a2,解得:a2=1,
∴(p-1)(1+p+a3)=p2-a3,
又∵a3=$\frac{1}{3}$,
∴(p-1)(1+p+$\frac{1}{3}$)=p2-$\frac{1}{3}$,解得:p=3,
∴2Sn=9-an,
∴2an+1=an-an+1,即an+1=$\frac{1}{3}$an,
又∵a1=p=3,
∴數(shù)列{an}是首項(xiàng)為3,公比為$\frac{1}{3}$的等比數(shù)列,
∴an=$\frac{3}{{3}^{n-1}}$=$\frac{1}{{3}^{n-2}}$;
(Ⅱ)由(I)可知bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$=$\frac{1}{2-lo{g}_{3}\frac{1}{{3}^{n-2}}}$=$\frac{1}{n}$,
∴bnbn+2=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$),
顯然Tn隨著n的增大而增大,且Tn<$\frac{3}{4}$,
則對于任意的正整數(shù)n都有Tn<m2-m+$\frac{3}{4}$成立等價于對于任意的正整數(shù)n都有$\frac{3}{4}$≤m2-m+$\frac{3}{4}$成立,
化簡得:m(m-1)≥0,
解得:m≤或m≥1.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}是等差數(shù)列,a1=2,且a2,a3,a4+1成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=$\frac{1}{{{a}_{n}}^{2}-1}$,數(shù)列{bn}的前n項(xiàng)和為Sn,求證:Sn$<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知log2(x+y)=log2x+log2y,則$\frac{1}{x}+\frac{1}{y}$=1,則x2+y2的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(1-x)+f(1+x)=0恒成立,a,b滿足不等式組$\left\{\begin{array}{l}{f({a}^{2}-6a+23)+f(^{2}-8b)≤0}\\{f(b+1)>f(5)}\end{array}\right.$,那么a2+b2的取值范圍是(  )
A.(17,49]B.[9,49]C.(17,41]D.[9,41]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算:
(1)$\frac{{a}^{-1}+^{-1}}{(ab)^{-1}}$
(2)16${\;}^{\frac{1}{2}}$-($\frac{1}{16}$)${\;}^{\frac{3}{4}}$-($\frac{1}{2}$)-3
(3)(${a}^{\frac{2}{3}}^{\frac{1}{2}}$)(-3a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷($\frac{1}{3}$a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)(b≠0)
(4)$\root{3}{{a}^{\frac{7}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}\root{3}{{a}^{15}}}$÷$\root{3}{\sqrt{{a}^{-3}}\sqrt{{a}^{-1}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(lg(x+1))的定義域[0,9],求函數(shù)f($\frac{x}{2}$)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知(a-1$\frac{1}{2}$)2+|b+$\frac{3}{4}$|=0,c與d互為相反數(shù),求8a-4b-$\frac{1}{2}$c-$\frac{1}{2}$d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知冪函數(shù)f(x)=(n2+2n-2)${x}^{{n}^{2}-3n}$的圖象關(guān)于直線x=0對稱,且在(0,+∞)上是減函數(shù),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足2an+1=an+an+2,它的前n項(xiàng)和為Sn,且a3=10,S6=72.若bn=$\frac{1}{2}$an-30.
(1)求數(shù)列{bn}的前n項(xiàng)和Tn的最小值;
(2)求數(shù)列{|bn|}的前n項(xiàng)和Mn

查看答案和解析>>

同步練習(xí)冊答案