9.已知(a-1$\frac{1}{2}$)2+|b+$\frac{3}{4}$|=0,c與d互為相反數(shù),求8a-4b-$\frac{1}{2}$c-$\frac{1}{2}$d的值.

分析 由已知條件利用平方、絕對(duì)值、相反數(shù)的性質(zhì)直接求解.

解答 解:∵(a-1$\frac{1}{2}$)2+|b+$\frac{3}{4}$|=0,
∴$\left\{\begin{array}{l}{a-1\frac{1}{2}=0}\\{b+\frac{3}{4}=0}\end{array}\right.$,解得a=$\frac{3}{2}$,b=-$\frac{3}{4}$,
∵c與d互為相反數(shù),
∴8a-4b-$\frac{1}{2}$c-$\frac{1}{2}$d=8×$\frac{3}{2}$-4×$(-\frac{3}{4})$=12+3=15.
∴8a-4b-$\frac{1}{2}$c-$\frac{1}{2}$d的值為15.

點(diǎn)評(píng) 本題考查代數(shù)式的值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平方、絕對(duì)值、相反數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù),a≠0,x∈R),若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞).
(1)求f(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時(shí),求g(x)=f(x)-kx最小值h(k);
(3)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=x2+(a-3)x+1在區(qū)間[-1,+∞)上是遞增的,則實(shí)數(shù)a的取值范圍是( 。
A.[-3,0)B.(-∞,-3]C.[5,+∞)D.(0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足(p-1)Sn=p2-an(p>0,p≠1),且a3=$\frac{1}{3}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$,數(shù)列{bnbn+2}的前n項(xiàng)和為T(mén)n,若對(duì)于任意的正整數(shù)n,都有Tn<m2-m+$\frac{3}{4}$成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)某企業(yè)每月生產(chǎn)電機(jī)x臺(tái),根據(jù)企業(yè)月度報(bào)表知,每月總產(chǎn)值m(萬(wàn)元)與總支出n(萬(wàn)元)近似地滿(mǎn)足下列關(guān)系:m=$\frac{9}{2}$x-$\frac{1}{4}$,n=-$\frac{1}{4}$x2+5x+$\frac{7}{4}$,當(dāng)m-n≥0時(shí),稱(chēng)不虧損企業(yè);當(dāng)m-n<0時(shí),稱(chēng)虧損企業(yè),且n-m為虧損額.
(1)企業(yè)要成為不虧損企業(yè),每月至少要生產(chǎn)多少臺(tái)電機(jī)?
(2)當(dāng)月總產(chǎn)值為多少時(shí),企業(yè)虧損最嚴(yán)重,最大虧損額為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.寫(xiě)出與下列各角終邊相同的角的集合S,并把S中在-360°~720°間的角寫(xiě)出來(lái).
(1)70°;    (2)-53°;   (3)480°16′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.計(jì)算:
(1)1.10+$\root{3}{64}$-0.5-2+lg25;
(2)$\frac{{4}^{x}}{{4}^{x}+2}+\frac{{4}^{1-x}}{{4}^{1-x}+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知長(zhǎng)方形的周長(zhǎng)為定值a,則它的面積的最大值是$\frac{{a}^{2}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.己知x∈R,則函數(shù)f(x)=$\frac{x}{{x}^{2}+4}$的值域是[$-\frac{1}{4}$,$\frac{1}{4}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案