16.要得到y(tǒng)=cos(2x-$\frac{π}{4}}$)的圖象,只要將y=cos2x的圖象(  )
A.向左平移$\frac{π}{8}$個(gè)單位B.向右平移$\frac{π}{8}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單D.向右平移$\frac{π}{4}$個(gè)單位

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律即可得解.

解答 解:將函數(shù)y=cos2x的圖象向右平移$\frac{π}{8}$個(gè)單位得到的函數(shù)解析式為:y=cos[2(x-$\frac{π}{8}$)]=cos(2x-$\frac{π}{4}$),
故選:B.

點(diǎn)評(píng) 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,四棱錐P-ABCD的底面為正方形,PA⊥平面ABCD,PA=AD,點(diǎn)M、N分別在棱PD、PC上,且PC⊥平面AMN.
(Ⅰ)求二面角P-AM-N的余弦值;
(Ⅱ)求直線CD與平面AMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知P為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2是焦點(diǎn),∠F1PF2取最大值時(shí)的余弦值為$\frac{1}{3}$,則此橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在數(shù)列{an}中,a1=$\frac{1}{3}$,前n項(xiàng)和Sn滿足Sn=(2n2-n)an
(1)寫出S1,S2,S3,S4;
(2)歸納猜想{an}的前n項(xiàng)和公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.記a,b分別是投擲兩次骰子所得的數(shù)字,則方程x2-ax+2b=0有兩個(gè)不同實(shí)根的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.100名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖所示.
(1)估計(jì)這100名學(xué)生的數(shù)學(xué)成績(jī)落在[50,60)中的人數(shù);
(2)求頻率分布直方圖中a的值;
(3)估計(jì)這次考試的中位數(shù)n(結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)復(fù)數(shù)z=a+bi(a,b∈R,i是虛數(shù)單位),若zi=1-2i,則a+b=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={0,2},B={-2,0,a},若A⊆B,則實(shí)數(shù)a的值為( 。
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若Sn=8an-1,則a5=$\frac{8^4}{7^5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案