1.如圖,已知l1,l2,l3,…ln為平面內(nèi)相鄰兩直線距離為1的一組平行線,點O到l1的距離為2,A,B是l1的上的不同兩點,點P1,P2,P3,…Pn分別在直線l1,l2,l3,…ln上.若$\overrightarrow{O{P}_{n}}$=xn$\overrightarrow{OA}$+yn$\overrightarrow{OB}$(n∈N*),則x1+x2+…+x5+y1+y2+…+y5的值為10.

分析 由題意作圖,從而由三點共線的性質(zhì)解得x1+y1=1,x2+y2=$\frac{3}{2}$,…,從而解得.

解答 解:由題意作圖象如下,
,
∵$\overrightarrow{O{P}_{1}}$=x1$\overrightarrow{OA}$+y1$\overrightarrow{OB}$,且A,B,P1三點共線,
∴x1+y1=1,
∵A1,B1,P2,三點共線,
∴存在x+y=1,使$\overrightarrow{O{P}_{2}}$=x$\overrightarrow{O{A}_{1}}$+y$\overrightarrow{O{B}_{1}}$,
∵$\overrightarrow{O{A}_{1}}$=$\frac{3}{2}$$\overrightarrow{OA}$,$\overrightarrow{O{B}_{1}}$=$\frac{3}{2}$$\overrightarrow{OB}$,
又∵$\overrightarrow{O{P}_{2}}$=x2$\overrightarrow{OA}$+y2$\overrightarrow{OB}$,
∴x2+y2=$\frac{3}{2}$,
同理可得,
x3+y3=2,x4+y4=$\frac{5}{2}$,x5+y5=3,
故x1+x2+…+x5+y1+y2+…+y5=1+$\frac{3}{2}$+2+$\frac{5}{2}$+3=10;
故答案為:10.

點評 本題考查了學生的作圖能力及向量的共線定理的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.給出下列命題:
(1)若f(x-1)=f(1-x),則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
(2)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=0對稱;
(3)$y={({\frac{1}{2}})^{|x|}}-{sin^2}x+2015$無最大值也無最小值;
(4)y=$\frac{2tanx}{1-ta{n}^{2}x}$的最小正周期為π;
(5)y=sinx(0≤x≤2π)有對稱軸兩條,對稱中心三個; 則正確命題是沒有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)滿足f(x+5)=f(x-5),且0≤x≤5時,f(x)=4-x,則f(1003)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,BC=$\sqrt{7}$,∠A=60°.
(Ⅰ)若cosB=$\frac{\sqrt{6}}{3}$,求AC的長;
(Ⅱ)若AB=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線平行于直線x+2y+5=0,一個焦點與拋物線y2=-20x的焦點重合,則雙曲線的方程為( 。ā 。
A.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1
C.$\frac{3{x}^{2}}{25}$-$\frac{3{y}^{2}}{100}$=1D.$\frac{3{x}^{2}}{100}$-$\frac{3{y}^{2}}{25}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=2tan(πx+3)的最小正周期為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知方程2x+x=4的解在區(qū)間(n,n+1)上,其中n∈Z,則n=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.拋物線y2=8x上橫坐標為1的點到其焦點F距離為( 。
A.2B.3C.4D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,矩形ABCD所在的平面與正方形ADPQ所在的平面相互垂直,E是QD的中點.
(Ⅰ)求證:QB∥平面AEC;
(Ⅱ)求證:平面QDC⊥平面AEC;
(Ⅲ)若AB=1,AD=2,求多面體ABCEQ的體積.

查看答案和解析>>

同步練習冊答案