分析 (1)利用同角三角函數(shù)基本關系式可求sinB,由正弦定理即可求AC的值.
(2)由余弦定理得:AC2-2AC-3=0,即可解得AC,利用三角形面積公式即可求值得解.
解答 解:(1)在△ABC中,BC=$\sqrt{7}$,∠A=60°.
因為cosB=$\frac{\sqrt{6}}{3}$,則sinB=$\frac{\sqrt{3}}{3}$,…(2分)
由正弦定理得:$\frac{AC}{sinB}=\frac{BC}{sinA}$,即$\frac{AC}{\frac{\sqrt{3}}{3}}$=$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$,得AC=$\frac{2\sqrt{7}}{3}$,…(5分)
(2)在△ABC中,BC=$\sqrt{7}$,∠A=60°,AB=2.
由余弦定理得:cos∠A=$\frac{A{C}^{2}+4-7}{2×2×AC}$=$\frac{1}{2}$,則AC2-2AC-3=0,
得AC=3.…(8分)
所以△ABC的面積為S=$\frac{1}{2}×2×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.…(10分)
點評 本題主要考查了同角三角函數(shù)基本關系式,正弦定理,余弦定理,三角形面積公式的綜合應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分數(shù)段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 總計 |
頻數(shù) | 20 | 40 | 70 | 50 | 20 | 200 |
女生 | 男生 | 總計 | |
及格人數(shù) | 60 | ||
不及格人數(shù) | |||
總計 |
P(K2≥k0) | 0.10 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com