分析 (1)由等差數(shù)列通項公式列出方程組,求出a1=17,d=-4,由此能求出{an}的通項公式與前n項和公式.
(2)由由an=21-4n≥0,得n≤$\frac{21}{4}$,當n≤5時,Tn=Sn,當n≥6時,Tn=-Sn+2S5,由此能求出數(shù)列{|an|}的前n項和Tn.
解答 解:(1)∵等差數(shù)列{an}的前n項和為Sn,S4=44,S7=35,
∴$\left\{\begin{array}{l}{4{a}_{1}+\frac{4×3}{2}d=44}\\{7{a}_{1}+\frac{7×6}{2}d=35}\end{array}\right.$,解得a1=17,d=-4,
∴an=17+(n-1)×(-4)=21-4n,
Sn=17n+$\frac{n(n-1)}{2}×(-4)$=19n-2n2.
(2)∵由an=21-4n≥0,得n≤$\frac{21}{4}$,
a5=21-4×5=1,a6=21-4×6=-3,
數(shù)列{|an|}的前n項和為Tn,
∴當n≤5時,Tn=Sn=19n-2n2,
當n≥6時,Tn=-Sn+2S5=2n2-19n+90,
∴${T}_{n}=\left\{\begin{array}{l}{19-2{n}^{2},n≤5}\\{2{n}^{2}-19n+90,n≥6}\end{array}\right.$.
點評 本題考查數(shù)列的通項公式、前n項和的求法,考查數(shù)列的前n項中各項絕對值的和的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | ($\frac{1}{2}$,1] | C. | ($\frac{1}{2}$,$\frac{5}{4}$) | D. | [1,$\frac{5}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}\overrightarrow{a}+\frac{2}{3}\overrightarrow$ | B. | $\frac{2}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow$ | C. | $\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow$ | D. | $\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com