A. | f(0)<f($\frac{1}{2}$) | B. | f(-2)>f(2) | C. | f(-1)<f(3) | D. | f(-4)=f(4) |
分析 根據(jù)條件判斷函數(shù)f(x)關(guān)于x=1對稱,利用函數(shù)對稱性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化即可得到結(jié)論.
解答 解:∵f(x+1)為偶函數(shù),
∴f(x+1)=f(-x+1),
即函數(shù)f(x)關(guān)于x=1對稱,
∵f(x)在[1,+∞)上單調(diào)遞增,
∴f(x)在(-∞,1]上單調(diào)遞減,
∴f(0)>f($\frac{1}{2}$),f(-2)=f(4)>f(2),f(-1)=f(3),f(-4)=f(6)>f(4),
故選:B.
點(diǎn)評 本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)對稱性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | B. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | D. | $-\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 異面 | B. | 平行 | C. | 相交 | D. | 以上均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -8 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com