A. | [-1,0] | B. | [-1,2] | C. | [-1,3] | D. | [-1,4] |
分析 如圖所示,由題意可得:點M所在的圓的方程為:(x-1)2+(y-1)2≤1(0≤x≤2,0≤y≤2).可設(shè)點M(x,y)可得$\overrightarrow{MA}$•$\overrightarrow{MB}$=(x-1)2+y2-1,由$\sqrt{(x-1)^{2}+{y}^{2}}$∈[0,2],即可得出.
解答 解:如圖所示,
由題意可得:點M所在的圓的方程為:(x-1)2+(y-1)2≤1(0≤x≤2,0≤y≤2).
可設(shè)點M(x,y)
A(0,0),B(2,0).
∴$\overrightarrow{MA}$•$\overrightarrow{MB}$=(-x,-y)•(2-x,-y)=-x(2-x)+y2=(x-1)2+y2-1,
由$\sqrt{(x-1)^{2}+{y}^{2}}$∈[0,2],
∴$\overrightarrow{MA}$•$\overrightarrow{MB}$∈[-1,3],
故選:C.
點評 本題考查了圓的標(biāo)準(zhǔn)方程、向量數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{7π}{6}$ | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{25}{6}$ | B. | 4$+\sqrt{3}$ | C. | 4$+2\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{{x}^{2}}$和y=$(\sqrt{x})^{2}$ | B. | y=lg(x2-1)和y=lg(x+1)+lg(x-1) | ||
C. | y=logax2和y=2logx | D. | y=x和y=logaax |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com