6.過點(1,0)且與直線y=$\frac{1}{2}$x-1平行的直線方程是( 。
A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0

分析 設(shè)要求的直線方程為:y=$\frac{1}{2}$x+m,把點(1,0)代入解得m.

解答 解:設(shè)要求的直線方程為:y=$\frac{1}{2}$x+m,把點(1,0)代入可得:0=$\frac{1}{2}$+m,解得m=-$\frac{1}{2}$.
∴要求的直線方程為:y=$\frac{1}{2}$x-$\frac{1}{2}$,化為:x-2y-1=0.
故選:A.

點評 本題考查了兩條直線平行與斜率的關(guān)系.,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)滿足$f(x)=-f(x+\frac{3}{2})$,且f(1)=2,則f(2017)=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,(a>b>0),F(xiàn)為其左焦點,A1,A2分別為其長軸的左右端點,B1為其短軸的一個端點,若原點O到直線FB1的距離$d=\frac{{\sqrt{6}}}{3}$,且橢圓的離心率$e=\frac{{\sqrt{6}}}{3}$;
(1)求橢圓的方程;
(2)過A1斜率為k(k≠0)的直線l與橢圓交于異于點A1的點C,又過A2作A2D⊥l于D點;
。$\overrightarrow{{A_1}D}=2\overrightarrow{{A_1}C}$,求直線l的方程;
ⅱ.是否存在實數(shù)λ,使${|{{A_1}D}|^2}+λ\frac{{{S_{△{A_1}OD}}}}{{{S_{△{A_1}OC}}}}$為常數(shù)?如存在,求出λ的值;如不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)集合$M=\{y|y={x^{-2}}\},P=\{x|y=\sqrt{x-1}\},則P∩M$( 。
A.(1,+∞)B.[1,+∞)C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,
AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(Ⅰ)若 B1C1⊥平面CEC1,求二面角B1-CE-C1的余弦值;
(Ⅱ)在線段C1E上是否存在一點M,使得直線AM與平面ADD1A1所成角的正弦值為$\frac{{\sqrt{2}}}{6}$,若存在,求EM:MC1的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題p:?x0∈R,x02+(a-1)x0+1<0,命題q:?x∈R,x2+ax+1≥0,p∨(¬q)為假命題,則實數(shù)a的取值范圍是( 。
A.[-2,-1]B.(-1,3)C.(-2,-1)D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=|x+2|+|x-3|.
(Ⅰ)求不等式f(x)<6的解集;
(Ⅱ)若關(guān)于的不等式f(x)≥|2a+1|恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{{x}^{2}}{ax+b}$,(a、b為常數(shù)),且函數(shù)g(x)=f(x)-x+12有兩個零點x1=3,x2=4.
(I)求函數(shù)f(x)的解析式;
(II)若k≥2,解關(guān)于x 的不等式f(x)<$\frac{(k+1)x-k}{2-x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)若關(guān)于x的不等式|x-3|+|x+2|≤|2a+1|的解集不是空集,試求a的取值范圍;
(2)已知關(guān)于x的不等式|x-a|≤4的解集為[-1,7],且兩正數(shù)s和t滿足2s+t=a,求證:$\frac{1}{s}+\frac{8}{t}≥6$.

查看答案和解析>>

同步練習冊答案