8.曲線的極坐標(biāo)方程為ρcosθ=2,它的直角坐標(biāo)方程是x=2.

分析 利用ρcosθ=x,將極坐標(biāo)方程為ρcosθ=2化成直角坐標(biāo)方程.

解答 解:∵ρcosθ=x,ρcosθ=2,
∴x=2.
故答案為:x=2.

點(diǎn)評(píng) 本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列推理是演繹推理的是(  )
A.由圓x2+y2=r2的面積S=πr2,推斷:橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的面積S=πab;
B.由平面三角形的性質(zhì)推測空間四面體的性質(zhì);
C.由a1=1,an=3n-2,求出S1,S2,S3,猜出數(shù)列{an}的前n項(xiàng)和的表達(dá)式;
D.由于f(x)=xcosx滿足f(-x)=-f(x)對(duì)?x∈R都成立,推斷f(x)=xcosx為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若不等式(x+y)($\frac{1}{x}$+$\frac{4}{y}$)≥m,對(duì)任意正實(shí)數(shù)x,y恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.[3,+∞)B.[6,+∞)C.(-∞,9]D.(-∞,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=(${\frac{1}{2}}$)x在區(qū)間[-1,2]上的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:“方程x2+mx+1=0恰好有兩個(gè)不相等的負(fù)根”;
命題q:“不等式3x-m+1≤0存在實(shí)數(shù)解”.若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=(x-1)ex-x2,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)$\overrightarrow{a}$=($\frac{3}{2}$,1+sina),$\overrightarrow$=(1-cosa,$\frac{1}{3}$),且$\overrightarrow{a}$∥$\overrightarrow$,則銳角a為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知定義在R上的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件
(1)f(x)+f(2-x)=0,
(2)f(x)=(-2-x)
(3)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,0]}\\{1-x,x∈(0,1]}\end{array}\right.$
則函數(shù)f(x)與函數(shù)g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$的圖象在區(qū)間[-3,3]上公共點(diǎn)個(gè)數(shù)為6個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知不等式ax2+3x-2<0的解集為{x|x<1或x>b}.
(Ⅰ)求a,b的值;
(Ⅱ)解不等式ax2+(b-ac)x-bc>0.

查看答案和解析>>

同步練習(xí)冊答案