16.已知函數(shù)$f(x)=\sqrt{3}sin(ωx+φ)(ω>0,-\frac{π}{2}≤φ<\frac{π}{2})$的圖象關(guān)于直線$x=\frac{π}{3}$對(duì)稱,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(1)求ω和φ的值;
(2)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),求函數(shù)y=f(x)的最大值和最小值.

分析 (1)由題意易得周期為π,可得ω,再由對(duì)稱軸可得φ值;
(2)利用(1)可得解析式,由x范圍結(jié)合三角函數(shù)的性質(zhì)可得最值.

解答 解:(1)∵函數(shù)f(x)圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,
∴?(x)的最小正周期T=π,∴ω=$\frac{2π}{T}$=2,
又∵f(x)圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,
∴2×$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z,
∵-$\frac{π}{2}$≤φ<$\frac{π}{2}$,∴φ=-$\frac{π}{6}$.
(2)由(1)知f(x)=2sin(2x-$\frac{π}{6}$),
∵x∈[0,$\frac{π}{2}$],
∴2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴f(x)min=f(0)=-$\frac{\sqrt{3}}{2}$,f(x)max=f($\frac{π}{3}$)=$\sqrt{3}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的圖象和性質(zhì),涉及三角函數(shù)的對(duì)稱性和最值,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-m|+|x+$\frac{4}{m}$|(m>0).
(Ⅰ)證明:f(x)≥4;
(Ⅱ)若f(2)<5,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=kx+b的圖象過點(diǎn)A(1,4),B(2,7).
(1)求實(shí)數(shù)的k,b值;
(2)證明當(dāng)x∈(-∞,+∞)時(shí),函數(shù)f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)在區(qū)間(-∞,0)上為增函數(shù)的是( 。
A.y=x2B.y=$\frac{-2}{x}$C.y=($\frac{1}{2}$)xD.y=3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=3x2+bx+c,不等式f(x)>0的解集為(-∞,-2)∪(0,+∞)
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+mx-2在(2,3)上單調(diào),求實(shí)數(shù)m的取值范圍;
(3)若對(duì)于任意的x∈[-2,2],f(x)+n≤3都成立,求實(shí)數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列關(guān)系式正確的是( 。
A.0∉ZB.∅⊆{0}C.∅∈{0}D.0∈∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知M={x|x2+x-2>0},$N=\{x|\frac{2}{2-x}>1\}$,則M∩N=( 。
A.{x|1<x<2}B.{x|0<x<1}C.{x|x<-2或x>1}D.{x|-2<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法中正確的是(  )
A.若命題p:x∈R,x2-x-1<0,則¬p:x∈R,x2-x-1>0.
B.命題:“若x2=1,則x=1或x=-1”的逆否命題是:“若x≠1且x≠-1,則x2≠1”
C.“$φ=\frac{π}{2}$”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D.命題p:若$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,k2-2),則k=2是$\overrightarrow{a}⊥\overrightarrow$的充分不必要條件;命題q:若冪函數(shù)f(x)=xa(a∈R)的圖象過點(diǎn)(2,$\frac{\sqrt{2}}{2}$),則f(4)=$\frac{1}{2}$,則p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,CC1=4,M是棱CC1的中點(diǎn).
(1)求證:BC⊥AM;
(2)若N是AB的中點(diǎn),求證CN∥平面AB1M.

查看答案和解析>>

同步練習(xí)冊(cè)答案