8.已知M={x|x2+x-2>0},$N=\{x|\frac{2}{2-x}>1\}$,則M∩N=( 。
A.{x|1<x<2}B.{x|0<x<1}C.{x|x<-2或x>1}D.{x|-2<x<2}

分析 分別求出M與N中不等式的解集確定出M與N,找出兩集合的交集即可.

解答 解:由M中不等式變形得:(x-1)(x+2)>0,
解得:x<-2或x>1,即M={x|x<-2或x>1},
由N中不等式變形得:$\frac{2}{2-x}$-1>0,即$\frac{x}{x-2}$<0,
解得:0<x<2,即N={x|0<x<2},
則M∩N={x|1<x<2},
故選:A.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖為某商場一天營業(yè)額的扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖你能得到服裝鞋帽和百貨日雜共售出29000元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在銳角△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若$\frac{^{2}}{ac}$≥$\frac{co{s}^{2}B}{cosAcosC}$,則B的取值范圍為( 。
A.(0,$\frac{π}{6}$]B.[$\frac{π}{6}$,$\frac{π}{2}$)C.(0,$\frac{π}{3}$]D.[$\frac{π}{3}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\sqrt{3}sin(ωx+φ)(ω>0,-\frac{π}{2}≤φ<\frac{π}{2})$的圖象關(guān)于直線$x=\frac{π}{3}$對稱,且圖象上相鄰兩個最高點的距離為π.
(1)求ω和φ的值;
(2)當(dāng)$x∈[0,\frac{π}{2}]$時,求函數(shù)y=f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-2$|\begin{array}{l}{x}\end{array}|$
(1)在平面直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;(不用列表,直接畫出草圖.)
(2)根據(jù)圖象,直接寫出函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)-m=0有四個解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列四個命題:①?x0∈R,使sinx0+cosx0=2;②對?x∈R,sinx+$\frac{1}{sinx}$≥2;③對?x∈(0,$\frac{π}{2}$),tanx+$\frac{1}{tanx}$≥2;④?x0∈R,使sinx0+cosx0=$\sqrt{2}$.其中正確命題的序號為③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對稱數(shù)列”.
(1)設(shè){bn}是7項的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項;
(2)設(shè){cn}是49項的“對稱數(shù)列”,其中c25,c26,…,c49是首項為1,公比為2的等比數(shù)列,求{cn}各項的和S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xoy中,拋物線y2=2px(p>0)的焦點為F,點A(4,m)在拋物線上,且|AF|=5.
(1)求拋物線的標(biāo)準(zhǔn)方程.
(2)是否存在直線l,使l過點(0,1),并與拋物線交于B,C兩點,且滿足$\overrightarrow{OB}$•$\overrightarrow{OC}$=0?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=ex,g(x)=mx+n,若對任意實數(shù)x,都有f(x)≥g(x),則mn的最大值為$\frac{e}{2}$.

查看答案和解析>>

同步練習(xí)冊答案