2.將下列各題迸行直角坐標(biāo)方程與極坐標(biāo)方程的互化
(1)y2+x2-2x-1=0;
(2)ρ=$\frac{1}{2-cosθ}$.

分析 (1)(2)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\\{{ρ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$即可化簡.

解答 解:(1)∵y2+x2-2x-1=0,∴ρ2-2ρcosθ-1=0;
(2)ρ=$\frac{1}{2-cosθ}$,∴2ρ-ρcosθ=1,∴$2\sqrt{{x}^{2}+{y}^{2}}$-x=1,化為:3x2+4y2-2x-1=0.

點(diǎn)評 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={y|y=($\frac{1}{2}$)x,x≤0},B={x|x2-$\frac{{y}^{2}}{2}$=1},則A∩B=(  )
A.[0,1]B.(0,1)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.當(dāng)x∈[-1,+∞)時,不等式x3-ax2-4x+8≥0恒成立,則a的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.關(guān)于定義在R上的函數(shù)f(x),給出下列三個命題
①若f(1)=f(-1),則f(x)不是奇函數(shù);
②若f(1)>f(-1),則f(x)在R上不是單調(diào)減函數(shù);
③若f(1+x)=f(x-1)對任意的x∈R恒成立,則f(x)是周期函數(shù).
其中所有正確的命題序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知cos($\frac{π}{4}$+α)=$\frac{1}{3}$,α∈(0,$\frac{π}{2}$),則cos($\frac{π}{12}$-α)=$\frac{1+2\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.多次執(zhí)行如圖所示的程序框圖,輸出的$\frac{m}{n}$的值會穩(wěn)定在某個常數(shù)附近,則這個常數(shù)為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB-bcosA=$\frac{1}{3}$c,cosC=-$\frac{\sqrt{10}}{10}$,則tanB的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC的三內(nèi)角A,B,C所對邊長分別是a,b,c,且它們邊上的高分別為$\frac{1}{13}$,$\frac{1}{5}$,$\frac{1}{11}$,則該三角形為( 。
A.銳角三角形B.直角三角形
C.鈍角三角形D.不存在這樣的三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-3y+2≥0}\\{x+y-6≤0}\\{y≥1}\end{array}\right.$,若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個,則$\frac{y}{x-a}$的取值范圍是[$\frac{1}{8}$,$\frac{2}{7}$].

查看答案和解析>>

同步練習(xí)冊答案