20.執(zhí)行如圖所示的程序框圖,輸出的S值為(  )
A.6B.14C.8D.12

分析 由已知中的程序語(yǔ)句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運(yùn)行,可得
S=20,k=1
執(zhí)行循環(huán)體,k=2,S=18
不滿(mǎn)足條件k>5,執(zhí)行循環(huán)體,k=4,S=14
不滿(mǎn)足條件k>5,執(zhí)行循環(huán)體,k=8,S=6
此時(shí),滿(mǎn)足條件k>5,退出循環(huán),輸出S的值為6.
故選:A.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若以直角坐標(biāo)系xoy的原點(diǎn)為極點(diǎn),ox為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線(xiàn)c的極坐標(biāo)方程是ρsin2θ=6cosθ.
(1)將曲線(xiàn)c的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線(xiàn)是什么曲線(xiàn);
(2)若直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),當(dāng)直線(xiàn)l與曲線(xiàn)c相交于A、B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,AD是△ABC的高,AE是△ABC的外接圓的直徑,點(diǎn)B和點(diǎn)C在直線(xiàn)AE的兩側(cè).求證:AB•AC=AD•AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知θ是第一象限角,若$sinθ-2cosθ=-\frac{2}{5}$,則sinθ+cosθ=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow m=({λ+1,1}),\overrightarrow n=({λ+2,2})$,若$({\overrightarrow m+\overrightarrow n})⊥({\overrightarrow m-\overrightarrow n})$,則λ=( 。
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知某幾何體的三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,則該幾何體中最長(zhǎng)的棱長(zhǎng)是( 。
A.4B.4$\sqrt{2}$C.4$\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知一三棱臺(tái)ABC-A1B1C1的三視圖如圖所示.
(1)畫(huà)出該三棱臺(tái)的直觀圖.
(2)求這三棱臺(tái)的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.點(diǎn)P的直角坐標(biāo)為(-$\sqrt{2}$,$\sqrt{2}$),那么它的極坐標(biāo)可表示為( 。
A.(2,$\frac{π}{4}$)B.(2,$\frac{3π}{4}$)C.(2,$\frac{5π}{4}$)D.(2,$\frac{7π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=|x-2|-|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2-t在x∈[-2,-1]時(shí)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案