分析 由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x≥0}\\{y-x+1≥0}\\{y+x-1≤0}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y-x+1=0}\\{y+x-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即C(1,0),
化目標函數(shù)z=$\sqrt{2}$x-y為直線方程斜截式:$y=\sqrt{2}x-z$,
由圖可知,當直線$y=\sqrt{2}x-z$過點C時,直線在y軸上的截距最小,z有最大值等于$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | ±$\sqrt{3}$ | C. | ±$\sqrt{3}$i | D. | $\sqrt{3}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com