【題目】已知數(shù)列滿足,.

(1)若,求數(shù)列的通項公式;

(2)若,且數(shù)列是公比等于2的等比數(shù)列,求的值,使數(shù)列也是等比數(shù)列;

(3)若,且,數(shù)列有最大值與最小值,求的取值范圍.

【答案】1;(2;(3.

【解析】

1)根據(jù)得出等差數(shù)列關系,求通項公式;

2)求出,利用累加法求出,根據(jù)數(shù)列是等比數(shù)列即可求解;

3)求出,討論其最大值最小值的關系求解.

(1),

所以數(shù)列為等差數(shù)列.因為,所以.

(2)數(shù)列是公比等于2的等比數(shù)列,,

所以,所以,

所以

.

因為數(shù)列是等比數(shù)列,

所以,所以,

時,,數(shù)列是等比數(shù)列

所以.

(3)當時,,

所以

時,上式依然成立,所以.

,

因為,所以,

即數(shù)列的偶數(shù)項構(gòu)成的數(shù)列是單調(diào)增數(shù)列,

同理,

即數(shù)列的奇數(shù)項構(gòu)成的數(shù)列是單調(diào)減數(shù)列,

,所以數(shù)列的最大值,

,所以數(shù)列的最小值.

所以,

因為,所以,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對任意xR,存在函數(shù)fx)滿足(

A.fcosx)=sin2xB.fsin2x)=sinx

C.fsinx)=sin2xD.fsinx)=cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是矩形,,點,分別是線段,的中點.求證:

1平面

2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

(Ⅱ)若直線經(jīng)過曲線的焦點且與曲線相交于兩點,設線段的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

(Ⅱ)若直線經(jīng)過曲線的焦點且與曲線相交于兩點,設線段的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.設數(shù)列的前n項和為且滿足

1)求數(shù)列的通項公式;

2)若求正整數(shù)的值;

3)是否存在正整數(shù),使得恰好為數(shù)列的一項?若存在,求出所有滿足條件的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(理)已知數(shù)列滿足),首項

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和

3)數(shù)列滿足,記數(shù)列的前項和為ABC的內(nèi)角,若對于任意恒成立,求角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中m是不等于零的常數(shù).

1時,直接寫出的值域;

2)求的單調(diào)遞增區(qū)間;

3)已知函數(shù),,定義:,,其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.例如:,,則,,.時,恒成立,求n的取值范圍.

查看答案和解析>>

同步練習冊答案