分析 (x+$\frac{4}{x}$-4)5的展開式中:Tr+1=${∁}_{5}^{r}$(-4)5-r$(x+\frac{4}{x})^{r}$,(r=0,1,…,5).$(x+\frac{4}{x})^{r}$的通項(xiàng)公式:Tk+1=4k${∁}_{r}^{k}$xr-2k.(k=0,1,…,r).令r-2k=3,k=0時,r=3;k=1時,r=5.即可得出.
解答 解:(x+$\frac{4}{x}$-4)5的展開式中:Tr+1=${∁}_{5}^{r}$(-4)5-r$(x+\frac{4}{x})^{r}$,(r=0,1,…,5)
$(x+\frac{4}{x})^{r}$的通項(xiàng)公式:Tk+1=${∁}_{r}^{k}$${x}^{r-k}(\frac{4}{x})^{k}$=4k${∁}_{r}^{k}$xr-2k.(k=0,1,…,r).
令r-2k=3,k=0時,r=3;k=1時,r=5.
∴x3的系數(shù)是${4}^{0}{∁}_{3}^{0}×(-4)^{5-3}{∁}_{5}^{3}$+$4{∁}_{5}^{1}$×$(-4)^{0}{∁}_{5}^{5}$=180.
故答案為:180.
點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5個 | B. | 6個 | C. | 7個 | D. | 8個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P(|X1|<1)=P(|X2|<1)=P(|X3|<1) | B. | P(|X1|<1)=P(|X2-1|<1)=P(|X3-1|<1) | ||
C. | P(|X1|<1)=P(|X2|<1)=P(|X3|<3) | D. | P(|X1|<1)=P(|X2-1|<1)=P(|X3|<3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com