分析 (1)由已知得F1(0,1),M(-$\frac{2\sqrt{6}}{3}$,$\frac{2}{3}$),將M(-$\frac{2\sqrt{6}}{3}$,$\frac{2}{3}$)代入$\frac{{y}^{2}}{^{2}+1}+\frac{{x}^{2}}{^{2}}$=1,能求出橢圓C1的方程.
(Ⅱ)設(shè)點(diǎn)Q(x,y),A(x1,y1),B(x2,y2),設(shè)$\overrightarrow{PA}$=-$λ\overrightarrow{AQ}$,$\overrightarrow{PB}=λ\overrightarrow{BQ}$,利用點(diǎn)差法能證明點(diǎn)Q總在直線上.
解答 解:(1)∵F1、F2分別為橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上、下焦點(diǎn),其中F1也是拋物線C2:x2=4y的焦點(diǎn),
∴F1(0,1),拋物線C2:x2=4y準(zhǔn)線y=-1,
∵點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=$\frac{5}{3}$,
∴由拋物線方程得到M(-$\frac{2\sqrt{6}}{3}$,$\frac{2}{3}$),將M(-$\frac{2\sqrt{6}}{3}$,$\frac{2}{3}$)代入$\frac{{y}^{2}}{^{2}+1}+\frac{{x}^{2}}{^{2}}$=1,得到b2=3或$^{2}=-\frac{8}{9}$(舍),
∴C1:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}$=1.
(Ⅱ)設(shè)點(diǎn)Q(x,y),A(x1,y1),B(x2,y2),
由題設(shè),|$\overrightarrow{PA}$|、|$\overrightarrow{PB}$|、|$\overrightarrow{AQ}$|、|$\overrightarrow{QB}$|均不為0,且滿足$\frac{|\overrightarrow{AP}|}{|\overrightarrow{PB}|}$=$\frac{|\overrightarrow{AQ}|}{|\overrightarrow{QB}|}$,
又P、A、Q、B四點(diǎn)共線,設(shè)$\overrightarrow{PA}$=-$λ\overrightarrow{AQ}$,$\overrightarrow{PB}=λ\overrightarrow{BQ}$,(λ>0,λ≠1),
∴${x}_{1}=\frac{4-4λ}{1-λ}$,${y}_{1}=\frac{1-λy}{1-λ}$,①
${x}_{2}=\frac{4+λx}{1+λ}$,${y}_{2}=\frac{1+λx}{1+λ}$,②
∵A(x1,y1),B(x2,y2)在橢圓上,
∴$\left\{\begin{array}{l}{(1-{x}_{1},3-{y}_{1})=-λ({x}_{2}-1,{y}_{2}-3)}\\{(x-{x}_{1},y-{y}_{1})=λ({x}_{2}-x,{y}_{2}-y)}\end{array}\right.$,
即$\left\{\begin{array}{l}{{x}_{1}-λ{(lán)x}_{2}=1-λ}\\{{y}_{1}-λ{(lán)y}_{2}=3-3λ}\\{{x}_{1}+λ{(lán)x}_{2}=x+λx}\\{{y}_{1}+λ{(lán)y}_{2}=y+λy}\end{array}\right.$,∴$\left\{\begin{array}{l}{{{x}_{1}}^{2}-{λ}^{2}{{x}_{2}}^{2}=(1-{λ}^{2})x}\\{{{y}_{1}}^{2}-{λ}^{2}{{y}_{2}}^{2}=3(1-{λ}^{2})y}\end{array}\right.$,
∵$\left\{\begin{array}{l}{3{{y}_{1}}^{2}+4{{x}_{1}}^{2}=12}\\{3{{y}_{2}}^{2}+4{{x}_{2}}^{2}=12}\end{array}\right.$,
∴12-12λ2=4(1-λ2)x+9(1-λ2)y,
∴點(diǎn)Q總在某定直線4x+9y-12=0上.
點(diǎn)評(píng) 本題考查橢圓方程的求法,考查點(diǎn)在定直線上的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法和橢圓性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=3sin(2x+\frac{π}{6})$ | B. | $y=3sin(2x-\frac{π}{3})$ | C. | $y=3sin(2x+\frac{π}{3})$ | D. | $y=3sin(2x-\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com