13.如圖輸出的n的值是( 。
A.1005B.65C.64D.63

分析 根據(jù)直到型的程序的應(yīng)用,根據(jù)條件進(jìn)行驗(yàn)證即可.

解答 解:當(dāng)n=64時(shí),S=$\frac{64×65}{2}$=2008,
當(dāng)n=65時(shí),S=$\frac{65×66}{2}$=2145>2010,
故輸出的n=65,
故選:B

點(diǎn)評(píng) 本題主要考查程序框圖的識(shí)別和應(yīng)用,根據(jù)直到型程序進(jìn)行模擬計(jì)算是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.銳角△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量$\overrightarrow m=(a,\sqrt{3}b)$與$\overrightarrow n=(cosA,sinB)$平行.
(1)求角A;
(2)若$a=\sqrt{2}$,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖1,已知ABCD是上、下底邊長分別為2和6的等腰梯形.將它沿對(duì)稱軸OO1折成直二面角,如圖2,滿足AC⊥BO1
(1)求線段OO1的長度;
(2)求二面角O-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)F是橢圓E:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$的左焦點(diǎn),過點(diǎn)F且傾斜角為150°的直線l交橢圓E于M,N兩點(diǎn),連接MO(O為坐標(biāo)原點(diǎn))并延長交橢圓于P,則△MNP面積為( 。
A.$\frac{5}{2}$B.5C.$\frac{15}{2}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等比數(shù)列{an}中,已知a2•a6=16,則a4=( 。
A.4B.-4C.8D.±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在底面為矩形的四棱錐D-ABCE中,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,二面角D-AE-C的平面角的正切值為-2.
(1)求證:平面ADE⊥平面CDE;
(2)求二面角A-BD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求下列函數(shù)的定義域
y=sin$\sqrt{{x}^{2}}$;y=$\frac{1}{1+2sinx}$;y=$\sqrt{\frac{1}{2}+sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知全集U={x|x<10,x∈N+}且(∁UA)∩B={1,9},(∁UA)∩(∁UB)={6,8},A∩B={2,4},求集合A和B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x均有f(x)=kf(x+2),其中k為常數(shù).
(1)若k=-1,函數(shù)f(x)是否具有周期性?若是,求出其周期;
(2)在(1)的條件下,又知f(x)為定義在R上的奇函數(shù),且當(dāng)0≤x≤1時(shí),f(x)=$\frac{1}{2}$x,則方程f(x)=-$\frac{1}{2}$在區(qū)間[0,2016]上有多少個(gè)解?(寫出結(jié)論,不需過程)
(3)若k為負(fù)常數(shù),且當(dāng)0≤x≤2時(shí),f(x)=x(x-2),求f(x)在[-3,3]上的解析式,并求f(x)的最小值與最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案